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Hierarchical Clustering

To cluster a set of data D={P;, P,, ...,Py}, hierarchical clustering proceeds
through a series of partitions that runs from a single cluster containing all
data points, to N clusters, each containing 1 data points.

Two forms of hierarchical clustering:

Divisive

Hierarchical Clustering

Methods differ in their inition of ir 1t distance (or similarity)

Hierarchical Clustering

1) Single linkage clustering Cluster A

Distance between closest pairs of points:

©

[ d(A,B) = min{d(P, P), P, € A, P, € B} ]

Cluster B

2) Complete linkage clustering
Cluster A

Distance between farthest pairs of points:

[ d(A, B) = max{d(P,, P).P; € A, P, € B} ] '

Cluster B
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Hierarchical Clustering

3) Average linkage clustering Cluster A

Mean distance of all mixed pairs of points:
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d(A,B) = =
AINB

Cluster B

4) Average group linkage clustering

Cluster A

Mean distance of all pairs of points: Cluster T
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Clustering

> K-means clustering

> How many clusters?

K-means clustering

The k-means algorithm partitions the data into k mutually
exclusive clusters

Feature 2

Feature 1

(http://www.weizmann.ac.il/midrasha/courses/)
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Algorithm description
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« Randomly choose initial positions of K centroids
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K-means clustering

Algorithm description

Choose the number of clusters - K

Randomly choose initial positions of K centroids

[- Assign each of the points to the “nearest centroid” (depends on

distance measure)
Re-compute centroid positions
If solution converges > Stop!
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K-means clustcring

Algorithm description
- Choose the number of clusters - K
- Randomly choose initial positions of K centroids

- Assign each of the points to the “nearest centroid” (depends on
distance measure)

+ Re-compute centroid positions
+ If solution converges > Stop!

(http://www.weizmann.ac.il/midrasha/courses/)

Clustering

> K-means clustering

> How many clusters?

Cluster Validation

Clustering is hard: it is an unsupervised learning technique. Once a
Clustering has been obtained, it is important to assess its validity!

The questions to answer:
>Did we choose the right number of clusters?

>Are the clusters compact?
>Are the clusters well separated?

To answer these q i we need a itative measure
of the cluster sizes:

>intra-cluster size
>Inter-cluster distances




Cluster Validation

Internal Cohesion

Within Cluster
|

External Separation
Between Clusters

Inter cluster size

Computing 5(A, B): Cluster A

Several options: e

> Single linkage

> Complete linkage 54, B)

> Average linkage

> Average group linkage e

Intra cluster size

Several options:
For a cluster S, with N members and center C:

« Complete diameter:
A(S) = max (d(x,y))
(xy)ES”

“ Average diameter:
1
A(S) =

TR

# Centroid diameter:

2
A®)=— 3 d(x0)
&




Clustering Quality
For a clustering with K clusters:
1) Dunn’s index
8(S,.S
D= min min (('A . )
==K | max{A(S,)
> Large values of D correspond to good clusters

2) Davies-Bouldin’s index

DB:imax(A(S‘)i»A(S,)]
K8,

-> Low values of DB correspond to good clusters

Cluster Quality: Silhouette index

Define a quality index for each point in the original dataset:

>For the ith object di, calculate its average distance to all other
objects in its cluster. Call this value a(di).

>For the ith object and any cluster not containing the object,
caleulate the object’s average distance to all the objects in the
given cluster.

Find the minimum such value with respect to all clusters;
call this value b(di).

>For the ith object, the silhouette coefficient is.

Sty o
max(a(di), b(di))

Cluster Quality: Silhouette index

a=avg




Cluster Quality: Silhouette Index

Note that:
S

>s(i) = 1, i is likely to be well classified
>s(i) = -1, i is likely to be incorrectly classified

>s(i) = 0, indifferent

Cluster Quality: Silhouette Index

Cluster silhouette index:
1 N
S(X) = T Z (i)

i=1

Global silhouette index:

1 K
GS=— SX;
K}:, )

Large values of GS correspond to good clusters

Comparing two clustering

Given a setof n elements § = {a),....,d,} and two paritions of § to compare, X = (X,,....X,), a partition of  into rsubsets, and , ¥ = (¥, ...

a partition of § into s subsets, define the following:

* a,the number of pairs of elements in that are in the same subset in and in the same subset in §
b the number of pairs of elements in that are in different subsets in and in different subsets in 5
+ ¢, the number of pairs of elements in that are in the same subset in and in different subsets in 5
 d, the number of pairs of elements in that are in different subsets in and in the same subset in 5

The Rand index, R, is

i a+b o @R
" a+b+c+d nn—1)
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