

Cluster Validation
Clustering is hard: it is an unsupervised learning technique. Once a Clustering has been obtained, it is important to assess its validity!
The questions to answer:
-Did we choose the right number of clusters?

- Are the clusters compact?
-Are the clusters well separated

To answer these questions, we need a quantitative measure
To answer these ques
of the cluster sizes:
>intra-cluster size
-intra-Cluster size
>Inter-cluster distances

Clustering Quality

Fora chuserngs wilk Kchucres
Fora chuserngs wilk Kchucres
1) Duma'sindex
1) Duma'sindex

$>$ Large values of D corresper end cluster
2) Davies-Bouldin's index
$D B=\frac{1}{K} \max \left(\frac{\Delta\left(S_{j}\right)+\Delta\left(S_{2}\right)}{\delta\left(S_{i}, S_{j}\right)}\right)$
$>$ Low values of DB correspond to good clusters

Cluster Quality: Silhouette index

Cluster Quality: Silhouette index

Cluster Quality: Silhouette Index
Note that:
$-1 \leq s(d i) \leq 1$
$>s(i)=1, i$ is likely to be well classified
$\left.\boldsymbol{z s}_{\mathrm{s}} \mathrm{i}\right)=-1, \mathrm{i}$ is likely to be incorrectly classified
$\boldsymbol{s}(\mathrm{i})=0$, indifferent

Cluster Quality: Silhouette Index

```
Clorsmootemdex
    S(\mp@subsup{X}{i}{})=\frac{1}{N}\mp@subsup{\sum}{i=1}{N}s(i)
Global silhouetce index:
    GS=\frac{1}{K}\mp@subsup{\sum}{i=1}{K}S(\mp@subsup{X}{i}{})
```

Large values of GS correspond to good dlusters

