Introduction to Matlab

Patrice Koehl
http://www.cs.ucdavis.edu/~koeh//
koehl@cs.ucdavis.edu

What is MATLAB?

- A high-performance language for technical computing (Mathworks, 1998)
- The name is derived from MATrix Laboratory
- Typical uses of MATLAB

Mathematical computations
Algorithmic development
Model prototyping
Data analysis and exploration of data (visualization)
Scientific and engineering graphics for presentation

Why Matlab?

Because it simplifies the analysis of mathematical models

- It frees you from coding in high-level languages (saves a lot of time - with some computational speed penalties)
- Provides an extensible programming/ visualization environment
- Provides professional looking graphs

Matlab

-The Matlab Environment
$>$ Variables; operations on variables
$>$ Programming
>Visualization

Variables in Matlab

-Begin with an alphabetic character: a
-Case sensitive: a, A
-No data typing: $a=10 ; a={ }^{\prime} O K^{\prime} ; a=2.5$
-Default output variable: ans

- Built-in constants: pi i j Inf
-clear removes variables
> who lists variables
- whos list variables and gives size
>Special characters : [] () \{\} ; \% : = @

Vectors in Matlab

>Row vectors
$\gg R 1=\left[\begin{array}{lllll}1 & 6 & 3 & 8 & 5\end{array}\right]$
>> R2 $=[1: 5]$
\gg R3 $=[-\mathrm{pi}: \mathrm{pi} / 3: \mathrm{pi}]$
> Column vectors
>> C1 $=[1 ; 2 ; 3 ; 4 ; 5]$
$\gg C 2=$ R2'

Matrices in Matlab

$>$ Creating a matrix

$\gg A=[12.550 ; 11.3$ pi 4 $]$
$\gg A=[R 1 ; R 2]$
>> A $=$ zeros $(10,5)$
>> $A=$ ones $(10,5)$
>> A = eye(10)

>Accessing elements

>> $A(1,1)$
>> $A(1: 2,2: 4)$
>> A(:,2)

Element wise operations

Operators.*, ./, and.^
>> Z = $\left[\begin{array}{ll}2 & 3\end{array} 4^{\prime}\right.$
$\gg B=[Z . \wedge 2$ Z Z.^0 $]$
$B=\begin{array}{lll}4 & 2 & 1 \\ 9 & 3 & 1\end{array}$
$\begin{array}{ll}16 \quad 4 & 1\end{array}$

Share workspace with other scripts and the command line interface.

-Function M-Files

Extend the MATLAB language
Can accept input arguments and return output arguments.
-Store variables in internal workspace.

M-file programming
-Always one script M-File
-Uses built-in and user-defined functions
$>$ Created in MATLAB Editor
>> edit model.m
$>$ Run from Command Line Window
>> model

Example of script

Example: model.m
\% Define input
$T=[0: 0.01: 30]$
\% Compute model
$\mathbf{Y}=\exp (-\mathbf{T}) ;$
\% Plot model
plot (T, Y);

Example of function

Example: amodel.m
function $\mathbf{Y}=\operatorname{amodel}(\mathbf{t}, \mathbf{A}, \mathbf{B}, \mathbf{a}, \mathbf{w}, \mathbf{p})$
\% H1 line: AMODEL computes step response.
\% Help text: appears when you type
\% "help amodel" in command line window.
\% Comment: function body is below.
$\mathbf{Y}=\mathbf{A} * \exp (-\mathrm{b} . * \mathrm{t}) . * \cos (\mathbf{w} . * \mathrm{t}+\mathrm{p})+\mathrm{B}$;

Input / Output
$>$ Get input from command window:
>> num = input('What is the altitude :')
\gg str $=$ input('Enter name of the planet','s')
$>$ Display output in command window

String

>> disp('The answer is:')

String + number
$\gg \operatorname{disp}([$ 'The value of x is: ' num2str($(\mathrm{x})]$)

Operators

- Arithmetic: $\mathrm{x}+\mathrm{y}$; $\mathrm{A} * \mathrm{~B}$; $\mathrm{X} . * \mathrm{Y}$; etc.
- Logical
- Element-wise AND: $\mathrm{a} \& \mathrm{~b}$
- Element-wise OR: a | b
- Relational
a == 5; a >= b; b ~= 6;
- Operator precedence
() i\} [] -> Arithmetic -> Relational -> Logical

Program flow control: For

Simple program that sums the squares of all the elements of
a matrix A:
$N=10$
$M=20$
$A=\operatorname{rand}(10,20)$
Sum $=0 ;$
for $i=1:$
for $\mathrm{j}=1$: M
Sum $=\operatorname{Sum}+A(1, j) \wedge 2 ;$
end
Note that this can be done in one line
Sum2 $=\operatorname{sum}(\operatorname{sum}(\mathrm{A}, * \mathrm{~A})$);

Program flow control: if

Simple program that compares two numbers a and b : set j to 1 if $a>b,-1$ if $a<b$, and 0 if $a=b$.
if $\mathbf{a}>\mathrm{b}$
$j=1 ;$
else if $a<b$
else ${ }^{j}=-1$;
end ${ }^{j}=0$;

Program flow control: switch

Simple program that reads in an integer number, checks if it is $-1,0,1$, or another number
$N=$ input('Enter an integer number: ')
switch N
case
case -1
disp('negative one')
case
disp('zero')
disp('zer
case
casp
disp('positive one
otherwise
disp('other value')

Other useful commands
-Workspace
>> clear
\gg who
>> whos
>> close
$>$ File operations
\gg Is
\gg dir
$\gg c d$
>> pwd
>> mkdir

Matlab

-The Matlab Environment

- Variables; operations on variables
>Programming
-Visualization
- Linear plots
>> plot (X, Y)
Plotting commands open the Figure editor.
- Multiple datasets on a plot
\qquad
>> plot(xcurve, ycurve)
>> hold on
>> plot(Xpoints, Ypoints)
>> hold off
- Subplots on a figure
>> subplot(1, 2, 1)
>> plot(time, velocity)
>> subplot(1, 2, 2)
>> plot(time, acceleration)

- 2D linear plots: plot

>> plot (X, Y, 'r-')
Colors: b, r, g, , m, c, k, w
Markers: o, *, ., +, x, d
Line styles: -, --, -., :

- Annotating graphs
>> plot (X, Y, 'ro')
>> legend ('Points')
>> title ('Coordinates')
>> xlabel ('X')
>> ylabel ('Y')
- Plot Edit mode: icon in Figure Editor

References
Violeta Ivanova, MIT
http://web.mit.edu/acmath/matlab/IAP2007/
Experiment with Matlab (Steve Moler):
htt:///www.mathworks.com/moler/exm/chapters.html
Matlab: Getting started
httos://www.mathworks.com/helel//matiab/getting-statred-with-matlab.html

