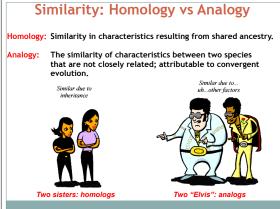
Sequence Analysis	
ECS129 PATRICE KOEHL	


Sequence Analysis: Outline

- 1. Why do we compare sequences?
- 2. Sequence comparison: from qualitative to quantitative methods
- 3. Deterministic methods: Dynamic programming
- 4. Heuristic methods: BLAST
- 5. Multiple Sequence Alignment

Sequence Analysis: Outline

- Why do we compare sequences?
 Biological sequences
 Homology vs analogy

 - Homology: orthology and paralogy
 Applications
- 2. Sequence comparison: from qualitative to quantitative methods
- 3. Deterministic methods: Dynamic programming
- 4. Heuristic methods: BLAST
- 5. Multiple Sequence Alignment

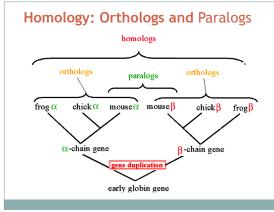
5, 5, 5,		
g from shared ancestry.		
ween two species table to convergent		
Similar due to uhother factors		
e "Elvis": analogs		

Homology: Orthologs and Paralogs

Homology:

Similarity in characteristics resulting from shared ancestry.

Paralogy:


Homologous sequences are paralogous if they were separated by a gene duplication event

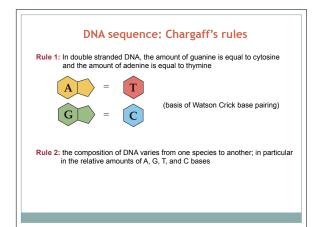
Orthology:

Homologous sequences are orthologous if they were separated by a speciation event

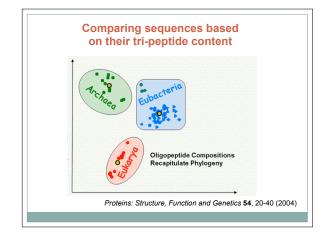
Further reading:

Koonin EV (2005). "Orthologs, paralogs, and evolutionary genomics". Annu. Rev. Genet. 39:309-338.

Applications of Sequence Analysis • Sequencing projects, assembly of sequence data • Evolutionary history • Identification of functional elements in sequences • gene prediction • Classification of proteins • Comparative genomics • RNA structure prediction • Protein structure prediction • Health Informatics


Sequence Analysis: Outline

1. Why do we compare sequences?


- Sequence comparison: from qualitative to quantitative methods
 Sequence composition
 Sequence comparison: DotPlot
 - 3. Sequence alignment
- 3. Deterministic methods: Dynamic programming

4. Heuristic methods: BLAST

5. Multiple Sequence Alignment

Source	Adenine to Guanine	Thymine to Cytosine	Adenine to Thymine	Guanine to Cytosine	Purines to Pyrimidine:
Ox	1.29	1.43	1.04	1.00	1.1
Human	1.56	1.75	1.00	1.00	1.0
Hen	1.45	1.29	1.06	0.91	0.99
Salmon	1.43	1.43	1.02	1.02	1.02
Wheat	1.22	1.18	1.00	0.97	0.99
Yeast	1.67	1.92	1.03	1.20	1.0
Hemophilus influenzae	1.74	1.54	1.07	0.91	1.0
E-coli K2	1.05	0.95	1.09	0.99	1.0
Avian tubercle bacillus	0.4	0.4	1.09	1.08	1.1
Serratia marcescens	0.7	0.7	0.95	0.86	0.9
Bacillus schatz	0.7	0.6	1.12	0.89	1.0

Comparing individual letters

Scores are usually stored in a "weight" matrix also called "substitution" matrix or "matching" matrix.

Defining the "proper" matrix is still an active area of research:

1.Identity matrix

2.Chemical property matrix In this matrix amino acids or nucleotides are intuitively classified on the basis of their chemical properties

3.Substitution-based matrix Dayhoff matrix PAM matrices Blosum matrices

Substitution Matrices

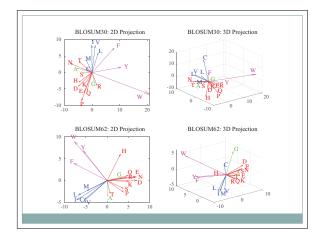
Dayhoff matrix was created in 1978 based on few closely related (> 85% identity) sequences available this time (1500 aligned amino-acids).

PAM-family of matrices is a simple update of the original Dayhoff matrix.

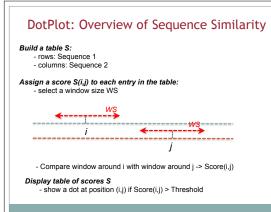
Gonnet matrices were created by exhaustive alignment of all Database sequences in 1992.

BLOSUM matrix is based on local similarities (blocks) of proteins rather than overall alignments.

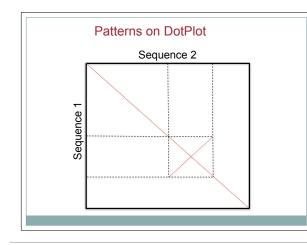
Most common Scoring Matrices

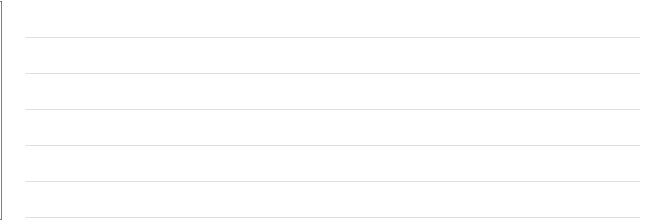

BLOSUM matrices (Henikoff and Henikoff, 1992)

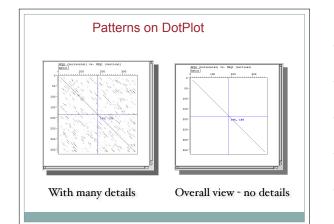
- Start from "reliable" alignments of sequences with at least XX % identity
- Compute mutation probabilities
- Convert into Scores: -> BLOSUMXX matrix

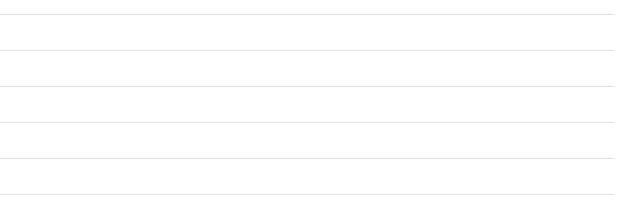

PAM matrices (Dayhoff, 1974)

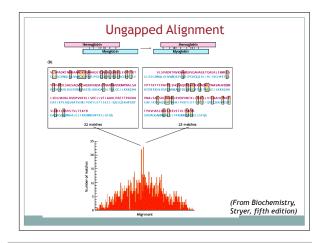
- Point Accepted Mutation
- Start with PAM score = 1: alignments of sequences with 1 mutation -> PAM1 matrix
- Generate successive PAM matrices: PAMXX = (PAM1)^{XX}


Example of a Scoring matrix: Blosum62	
S T P A G N D E Q H R K M I L V F Y W	
I I <thi< th=""> <thi< th=""> <thi< th=""> <thi< th=""></thi<></thi<></thi<></thi<>	
0 1 1 1 1 1 1 2 2 3 1 1 1 2 3 1 3 3 3 3 3	
3 1 0 -2 -2 0 6 1 0 0 -1 0 0 -2 -3 -3 -3 -2 -4 -3 0 1 -1 2 0 6 1 0 0 -1 -2 -3 -3 -3 -2 -4 -3 0 1 -1 2 0 -1 -2 -1 -3 -3 -4 -3 -3 -3 -4 -3 -3 -4	
4 0 0 -1 -1 -2 0 2 5 2 0 0 1 -2 -3 -3 -3 -3 -2 -3 -3 0 0 -1 -1 -2 0 0 1 -2 -3 -3 -3 -3 -2 -3 -3 0 0 -1 -1 -2 0 0 1 1 0 -3 -2 -3 -3 0 0 -1 2 0 0 2 5 0 1 1 0 -3 -2 -3 -3 -4 -3 -3 -3 -2 -3 -3 -4 -3 -2 -3 -3 -4 -3 -2 -3 -3 -2 -3 -3 -4 -3 -2 -3 -3 -4 -3 -2 -3 -3 -4 -3 -2 <td< td=""><td></td></td<>	
3 1 0 2 1 1 0 0 0 1 2 3 3 2 1 2 2 3 1 1 2 1 1 0 0 0 1 2 3 3 2 1 2 2 3 3 1 2 2 3 3	
1 1 2 1 3 2 3 2 0 2 1 1 5 1 2 2 0 1 1 1 2 2 3 1 4 3 3 3 3 3 3 1 1 4 2 1 0 1 3	
1 2 2 3 1 4 3 4 3 2 3 2 2 2 2 4 3 0 1 2 1 2 2 2 2 3 3 2 2 3 3 2 1 3 1 4 1 1	
2 2 2 4 2 3 3 3 3 4 3 3 0 0 0 0 1 6 3 1 2 2 2 3 2 3 2 1 2 2 2 1 1 1 3 7 2	
2 3 3 4 3 2 4 4 3 2 2 3 3 1 2 1	

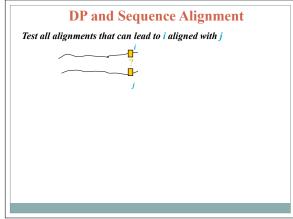




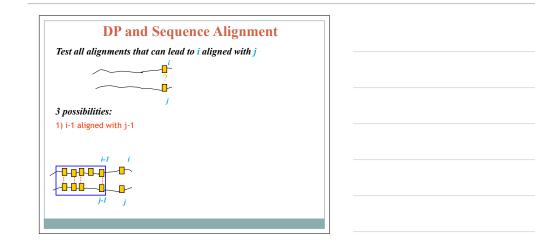


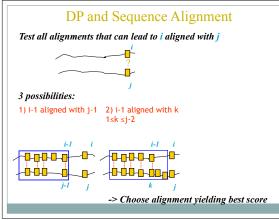


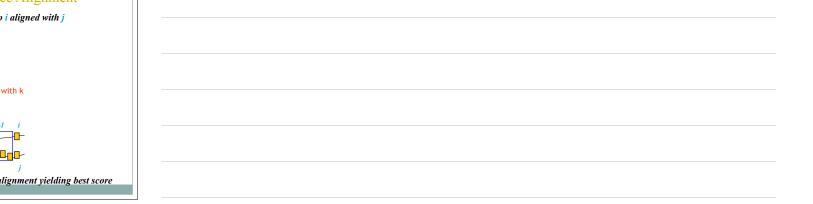
Alignment with gap(s)	
Monogobin a V目かれたいがんの「ひっちょう」」 approachin c」までを取り、いいにのようし、ドウィーは、日本、日本、日本、日本、日本、日本、日本、日本、日本、日本、日本、日本、日本、	
LSHCLIMILANDREFT ATHASLOKFLASHATULSKYN	
How do we generate the "best" gapped alignment ? $\frac{\min(N,M)}{N} (N) (M)$	
Total number of possible gapped alignment: $\sum_{k=1}^{N} \binom{N}{k} \binom{N}{k}$	
Total number of possible gapped alignment: $k = 1$ $k \not \mid k$	

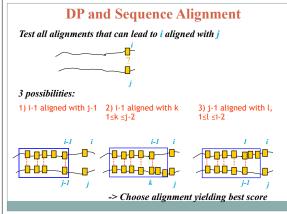

Sequence Analysis: Outline

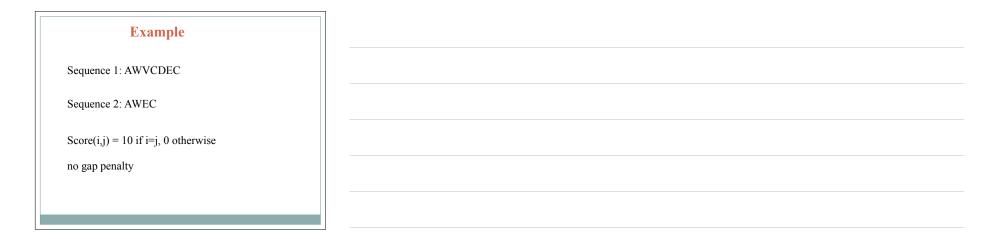
- 1. Why do we compare sequences?
- 2. Sequence comparison: from qualitative to quantitative methods
- 3. Deterministic methods: Dynamic programming 1. Concept

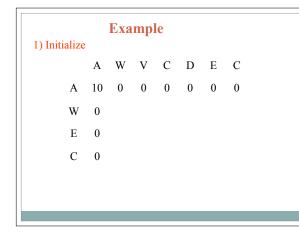

 - 2. Global Alignment
 3. Statistics
 4. Local Alignment
- 4. Heuristic methods: BLAST

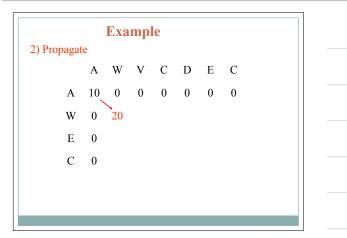

5. Multiple Sequence Alignment

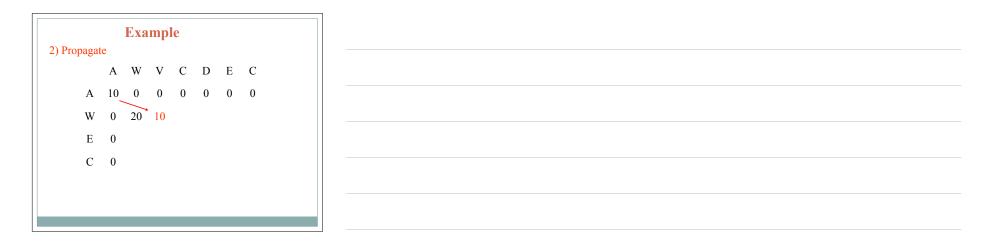

DP and Sequence Alignment
ey idea:
.y meu.
ne score of the optimal alignment that ends at a given ir of positions in the sequences is the score of the best
ignment previous to these positions plus the score of igning these two positions.

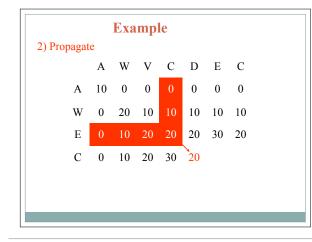


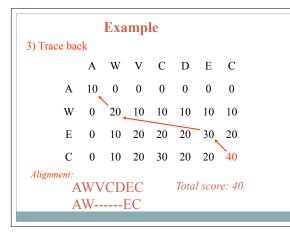


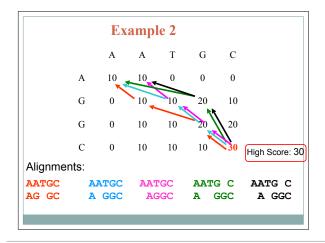


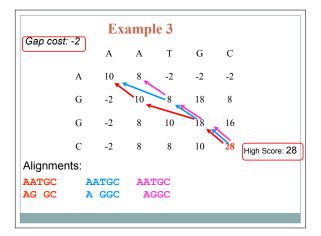


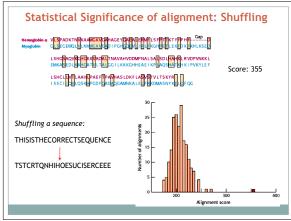


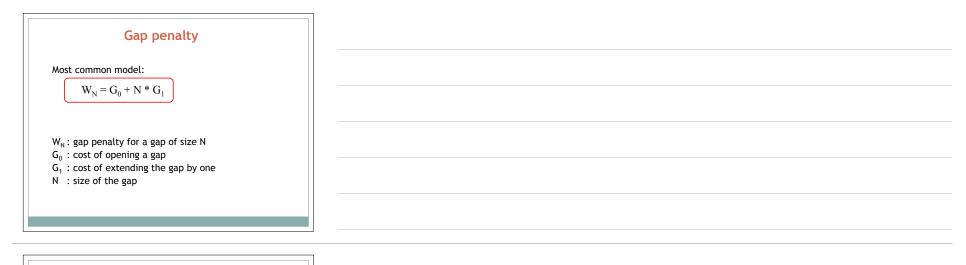




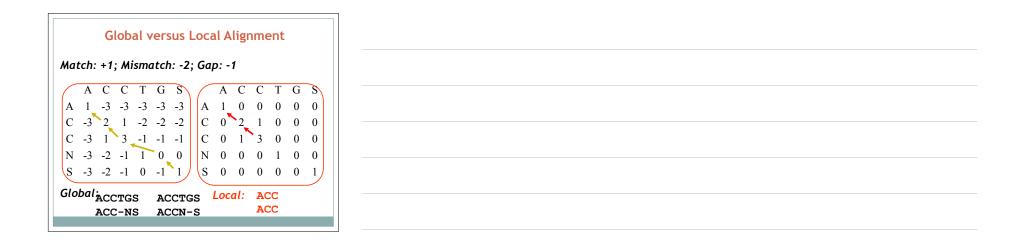








Global versus Local Alignment	
Global alignment finds the arrangement that maximizes total score Best known algorithm: Needleman and Wunsch.	3
Local alignment identifies highest scoring subsequences, sometimes at the expense of the overall score. Best known algorithm: Smith and Waterman.	
Local alignment algorithm is just a variation of the global alignment	
algorithm!	


Modifications	for I	ocal	alignment
mounications		ocui	anginnene

1) The scoring matrix has negative values for mismatches

1) The minimum score for any (i,j) in the alignment matrix is 0.

1) The best score is found anywhere in the filled alignment matrix

These 3 modifications cause the algorithm to search for matching sub-sequences which are not penalized by other regions (modif. 2), with minimal poor matches (modif 1), which can occur anywhere (modif 3).

Sequence Analysis: Outline

1. Why do we compare sequences?

2. Sequence comparison: from qualitative to quantitative methods

3. Deterministic methods: Dynamic programming

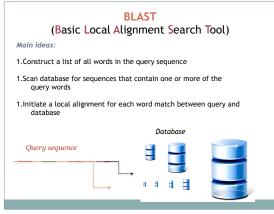
4. Heuristic methods: BLAST 1. Concept

2. Ungapped BLAST 3. Gapped BLAST

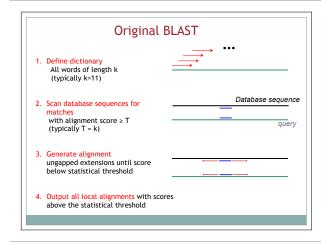
5. Multiple Sequence Alignment

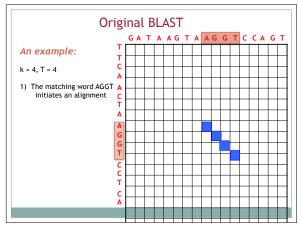
Sequence Analysis

1. Why do we compare sequences?

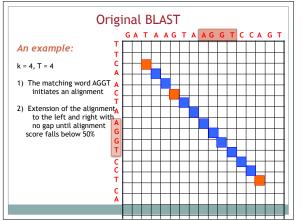

1. Sequence comparison: from qualitative to quantitative methods

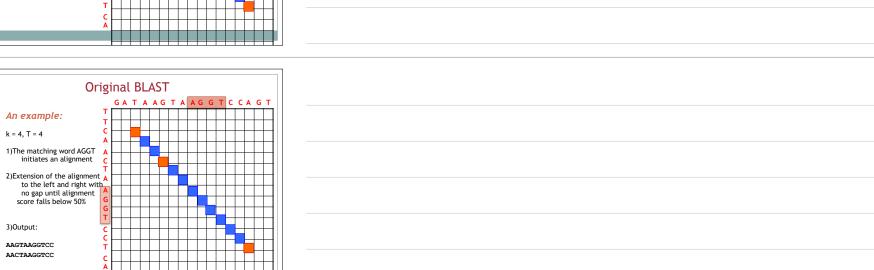
1. Deterministic methods: Dynamic programming

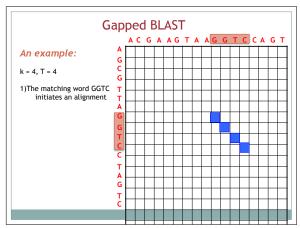

1. Heuristics: BLAST 1. Concept

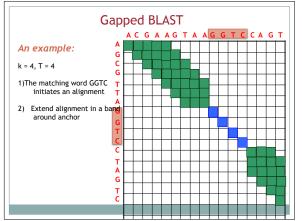

2. Ungapped BLAST 3. Gapped BLAST

1. Multiple Sequence Alignment

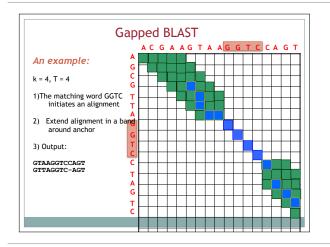


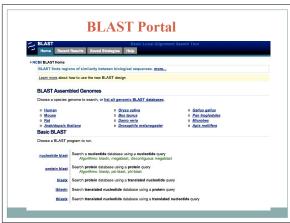


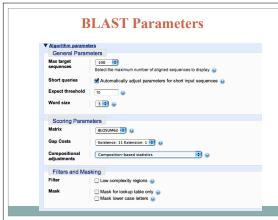


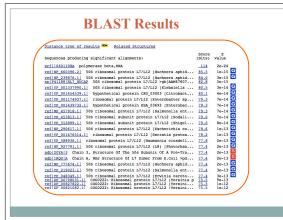

An example: k = 4, T = 4

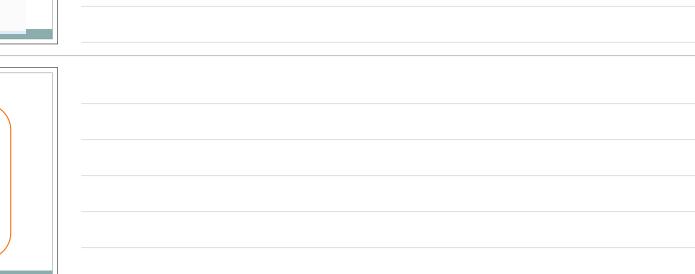
3)Output: AAGTAAGGTCC AACTAAGGTCC



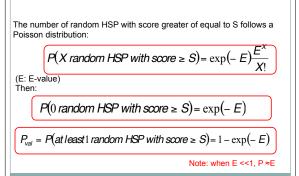








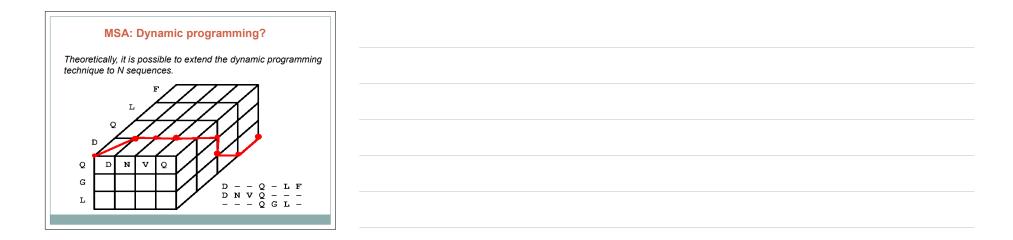
BLAST/ blastp suite:	BLASTP programs search protein databases using a protein query. more	Reset page Bookman			
Enter Query S	Sequence				
Enter accession m	number, gl, or FASTA sequence 🔬 Clear	Query subrange 🥹			
	CHAINISEQUENCE AAGANKVAVIKAVRGATCLGLKEAKDLVESAPAALKEGVSKDDAEALKKALEE	From			
Or, upload file	(Choose File) no file selected				
Job Title	Enter a descriptive title for your BLAST search 🤢				
Choose Sean	ch Set				
Database	Non-redundant protein sequences (nr) 🔹 🤢				
Organism	Enter organism name or id-completions will be suggested				
Optional	Enter organism common name, binomial, or tax id. Only 20 top taxa will be sho	wn. 😜			
Entrez Query Optional	Enter an Entrez query to limit search 😣				
Program Sele	ction				
Algorithm	blastp (protein-protein BLAST)				
	O PSI-BLAST (Position-Specific Iterated BLAST)				
	O PHI-BLAST (Pattern Hit Initiated BLAST)				
	Choose a BLAST algorithm 🤬				
BLAST	Search database nr using Blastp (protein-protein BLAST)				



Statistics of Protein Sequence Alignment	
Statistics of global alignment:	
Unfortunately, not much is known! Statistics based on Monte Carlo simulations (shuffle one sequence and recompute alignment	
to get a distribution of scores)	
. Statistics of local alignment	
 Statistics of local alignment 	
Well understood for ungapped alignment. Same theory probably	
apply to gapped-alignment	

Statistics of Protein Sequence Alignment	
What is a local alignment ? "Pair of equal length segments, one from each sequence, whose scores can not be improved by extension or trimming.	
These are called high-scoring pairs, or HSP" http://www.people.virginia.edu/~wrp/cshi98/Altschul/Altschul-1.html	

	The E-value for a sequence alignment		
	HSP scores follow an extreme by two parameters, K and λ .	e value distribution, characterized	
		The expected number of HSP with score at least S is given by:	
1	0 -7.5 -5 -2.5 0 2.5 5 S S 10	$E = Kmn \exp(-\lambda S)$	
		m, n : sequence lengths E : E-value	



	Why multiple converse elignment?
	Why multiple sequence alignment?
	Seq1: AALG C LVKDYFPEPVTVS <mark>W</mark> NSG
	Seq2: VSLT C LVKGFYPSDIAVE WW SNG
1	

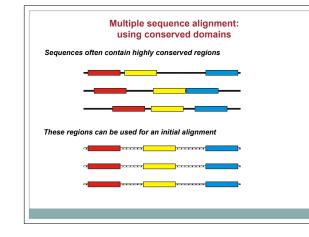
Why multiple sequence alignment? Seq1: AALGCLVKDYFPEPVTVSWNSG Seq2: VSLTCLVKGFYPSDIAVEWWSNG Seq3: VTISCTGSSSNIGAG-NHVKWYQQLPG Seq4: VTISCTGTSSNIGSITVNWYQQLPG Seq5: LRLSCSSSGFIFSSYAMYWVRQAPG Seq6: LSLTCTVSGTSFDDYYSTWVRQPPG Seq7: PEVTCVVVDVSHEDPQVKFNWYVDG Seq8: ATLVCLISDFYPGAVTVAWKADS		
Seq2: VSLTCLVKGFYPSDIAVEWWSNG Seq3: VTISCTGSSSNIGAG-NHVKWYQQLPG Seq4: VTISCTGTSSNIGSITVNWYQQLPG Seq5: LRLSCSSSGFIFSSYAMYWVRQAPG Seq6: LSLTCTVSGTSFDDYYSTWVRQPPG Seq7: PEVTCVVVDVSHEDPQVKFNWYVDG	W	hy multiple sequence alignment?
	Seq2: V Seq3: V Seq4: V Seq5: I Seq6: I Seq7: F	VSLTCLVKGFYPSDIAVEWWSNG VTISCTGSSSNIGAG-NHVKWYQQLPG VTISCTGTSSNIGSITVNWYQQLPG LRLSCSSSGFIFSSYAMYWVRQAPG LSLTCTVSGTSFDDYYSTWVRQPPG PEVTCVVVDVSHEDPQVKFNWYVDG

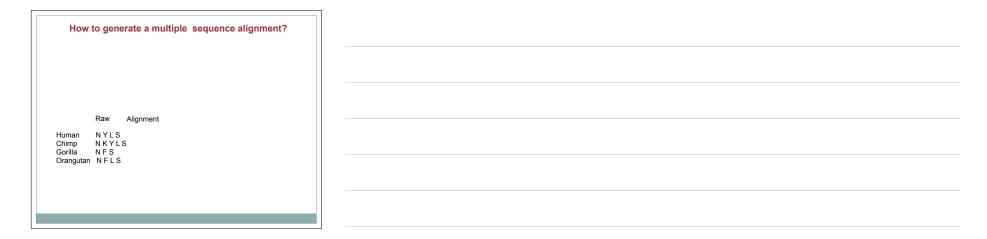
MSA: Dynamic programming?

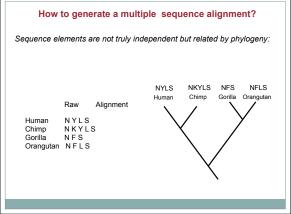
- One of the most important properties of an algorithm is how its execution time increases as the problem is made larger. This is the computational complexity of the algorithm

- There is a notation to describe the algorithmic complexity, called **the big-O notation**. If we have a problem of size (i.e. number of input data points) n, then an algorithm takes **O(n)** time if the time increases linearly with n.

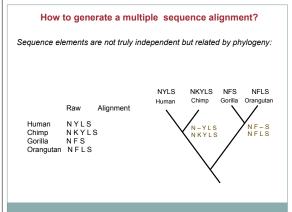
-It is important to realize that an algorithm that is **quick on** small problems may be totally useless on large problems if it has a bad O() behavior.

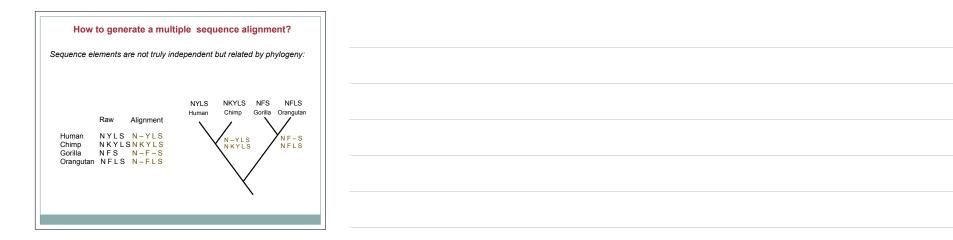

MSA: Dynamic programming?

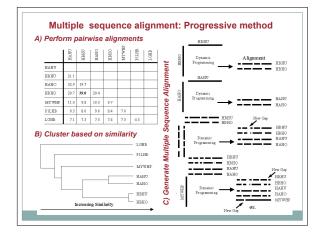

Standard description of algorithms, where n is the size of the problem, and c is a constant:


Complexity	Туре	Computing time for n=1000 (1 operation=1s)
0(c)	Dream	Seconds
O(log(n))	Really good	10 seconds
O(n)	good	1000 seconds = 5 mins
O(n ²)	Not so good	10 ⁶ seconds = 11.5 days
O(n ³)	Bad	10 ⁹ seconds = 31 years
O(c ⁿ)	Catastrophic!	Millions of years!!

MSA: Dynamic programming?	
Computational complexity of dynamic programming: -Two sequences of length M : O(M ²) -Three sequences of length M: O(M ³)	
- N sequences of length M: O(M ^N)	
-> dynamic programming is not a reasonable option for aligning multiple sequences!	







Some References on Alignments

Global Alignment:

Needleman, S.B. and Wunsch, C.D. (1970). "A general method applicable to the search for similarities in the amino acid sequence of two proteins". Journal of Molecular Biology 48 (3): 443-53

Local alignment: Smith, T.F. and Waterman, M.S. (1981) "Identification of Common Molecular Subsequences". Journal of Molecular Biology 147: 195–197

ClustalW:

Thompson, J. D., Higgins, D.G. and Gibson, T.J. (1994) "CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, positions-specific gap penalties and weight matrix choice". Nucleic Acids Research, 22:4673-4680

What have we learnt?

1) Sequence analysis is one of the keys that will help us unravel the information coming from Genomics

2) Vocabulary

- Analogy: The similarity of characteristics between two species that are not closely related
- Homology: Similarity in characteristics resulting from shared ancestry • Paralog: Homologous sequences are paralogous if they were
 - separated by a gene duplication event · Ortholog: Homologous sequences are orthologous if they were
- separated by a speciation event
- 3) In bioinformatics we often assume that sequence similarity implies homology. However we do need to be cautious.

What have we learnt?	
 4) Sequence analysis starts with an analysis of its content 1) DNAs: Chargaff rule2: the composition of DNA varies from one species to another 	
2) Proteins: Tri-peptide content identifies the kingdom of life (bacteria, archea or eukaryot)	
5) DotPlots are very useful, qualitative tools for sequence comparison	
4) Scoring between sequences is usually based on substitution matrices Most common matrices: PAM and BLOSUM	

What have we learnt?

- 1. Dynamic programming (DP) is an algorithm for aligning two sequences that is guaranteed to generate the optimal alignment, under the hypothesis that the scores are additive.
- 2. There are two variants of DP used for sequence analysis Global alignment: Needleman and Wunsch Local alignment: Smith and Waterman
- 3. DP is too slow for comparing a sequence with a large database
- 4. **BLAST** provides a heuristic method for detecting sequences that are similar
- 5. BLAST is best for detection and should not be trusted for the alignment itself

What have we learnt?

6) Multiple sequence alignment: definition A multiple sequence alignment is an alignment of n > 2 sequences obtained by inserting gase ("-) into sequences such that the resulting sequences have all length L, MSW can help to reveal biological facts about proteins, to establish homology,...

7) Difficulties in generating MSA Most pairwise alignment algorithms are too complex to be used for N-wise alignments

8) Three main types of MSA algorithms:

- Progressive global alignment (starts with the most alike sequences) * e.g., ClustalW, ClustalX - Iterative methods (initial alignment of groups of sequences that are revised)

* MultAlin, PRRP. SAGA

- Alignments based on locally conserved patterns