
Sequence Analysis

- ❖ ECS129
- ❖ Patrice Koehl

Sequence Analysis: Outline

1. Why do we compare sequences?
2. Sequence comparison: from qualitative to quantitative methods
3. Deterministic methods: Dynamic programming
4. Heuristic methods: BLAST
5. Multiple Sequence Alignment

Similarity: Homology vs Analogy

Homology: Similarity in characteristics resulting from shared ancestry.

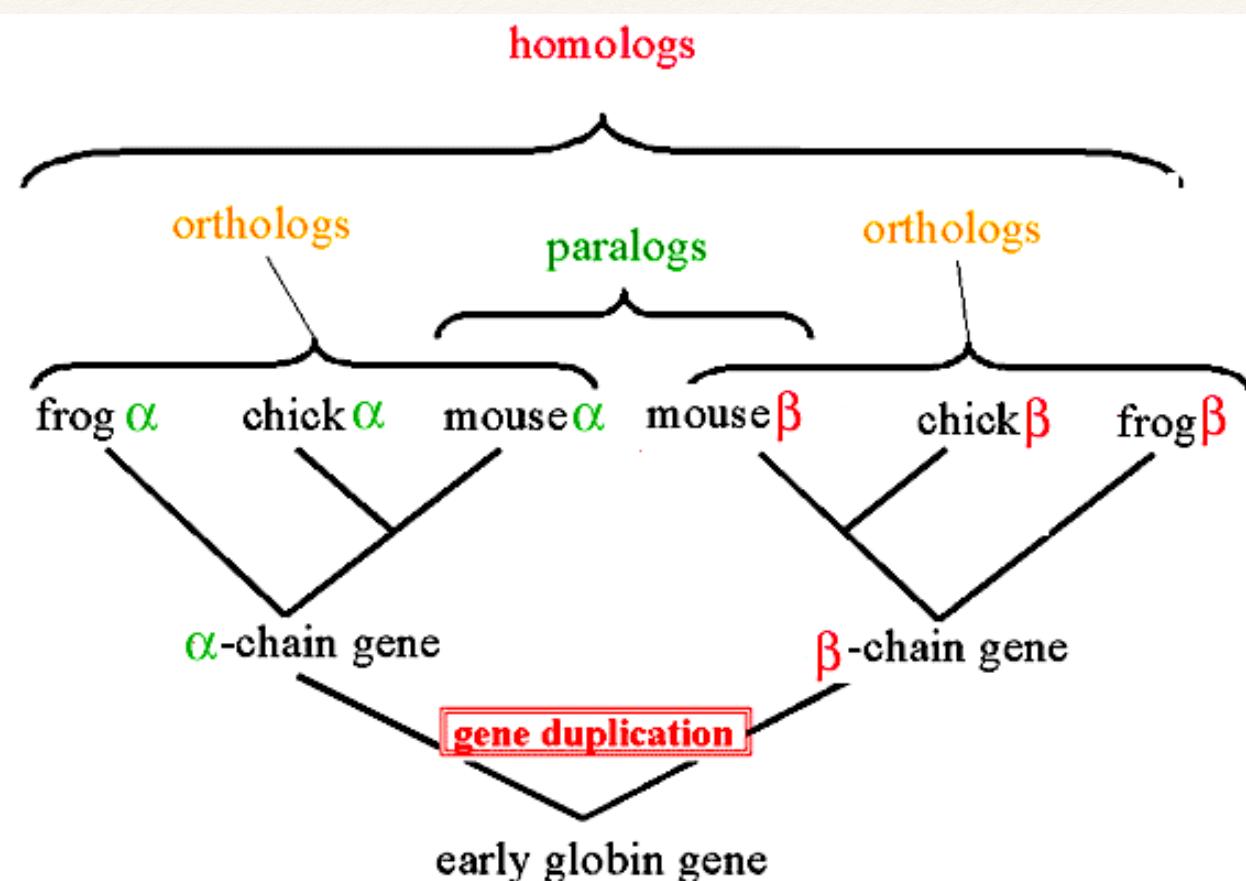
Analogy: The similarity of characteristics between two species that are not closely related; attributable to convergent evolution.

Two sisters: homologs

Two “Elvis”: analogs

Homology: Orthologs and Paralogs

Homology: Similarity in characteristics resulting from shared ancestry.

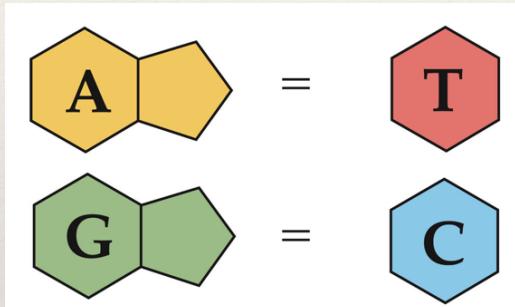

Paralogy: Homologous sequences are paralogous if they were separated by a gene duplication event

Orthology: Homologous sequences are orthologous if they were separated by a speciation event

Further reading:

Koonin EV (2005). “Orthologs, paralogs, and evolutionary genomics”. *Annu. Rev. Genet.* 39:309-338.

Homology: Orthologs and Paralogs



Applications of Sequence Analysis

- Sequencing projects, assembly of sequence data
- Evolutionary history
- Identification of functional elements in sequences
- gene prediction
- Classification of proteins
- Comparative genomics
- RNA structure prediction
- Protein structure prediction
- Health Informatics

DNA sequence: Chargaff's rules

Rule 1: In double stranded DNA, the amount of guanine is equal to cytosine and the amount of adenine is equal to thymine

(basis of Watson Crick base pairing)

Rule 2: the composition of DNA varies from one species to another; in particular in the relative amounts of A, G, T, and C bases

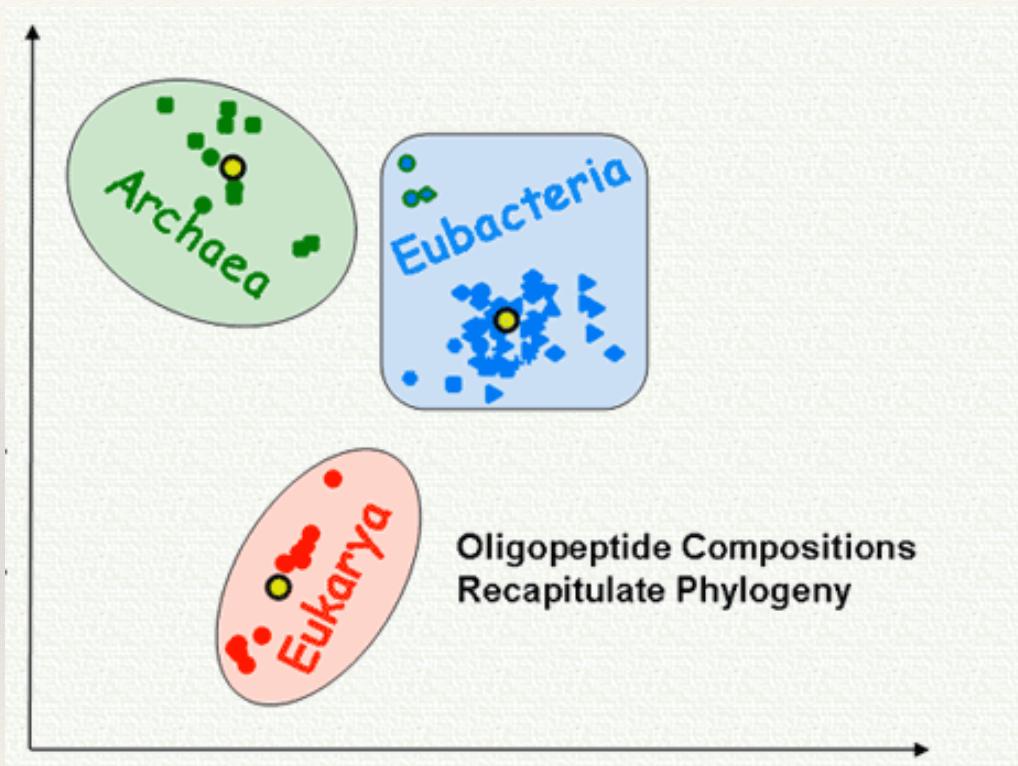

DNA sequence: Chargaff's rules

Table 3-2 Data Leading to the Formulation of Chargaff's Rules

Source	Adenine to Guanine	Thymine to Cytosine	Adenine to Thymine	Guanine to Cytosine	Purines to Pyrimidines
Ox	1.29	1.43	1.04	1.00	1.1
Human	1.56	1.75	1.00	1.00	1.0
Hen	1.45	1.29	1.06	0.91	0.99
Salmon	1.43	1.43	1.02	1.02	1.02
Wheat	1.22	1.18	1.00	0.97	0.99
Yeast	1.67	1.92	1.03	1.20	1.0
<i>Hemophilus influenzae</i>	1.74	1.54	1.07	0.91	1.0
<i>E-coli</i> K2	1.05	0.95	1.09	0.99	1.0
Avian tubercle bacillus	0.4	0.4	1.09	1.08	1.1
<i>Serratia marcescens</i>	0.7	0.7	0.95	0.86	0.9
<i>Bacillus schatz</i>	0.7	0.6	1.12	0.89	1.0

SOURCE: After E. Chargaff et al., *J. Biol. Chem.* 177 (1949).

Comparing sequences based on their tri-peptide content

Proteins: Structure, Function and Genetics 54, 20-40 (2004)

Comparing individual letters

Scores are usually stored in a “weight” matrix also called “substitution” matrix or “matching” matrix.

Defining the “proper” matrix is still an active area of research:

1. Identity matrix

2. Chemical property matrix

In this matrix amino acids or nucleotides are intuitively classified on the basis of their chemical properties

3. Substitution-based matrix

Dayhoff matrix

PAM matrices

Blosum matrices

Substitution Matrices

Dayhoff matrix was created in 1978 based on few closely related (> 85% identity) sequences available this time (1500 aligned amino-acids).

PAM-family of matrices is a simple update of the original Dayhoff matrix.

Gonnet matrices were created by exhaustive alignment of all Database sequences in 1992.

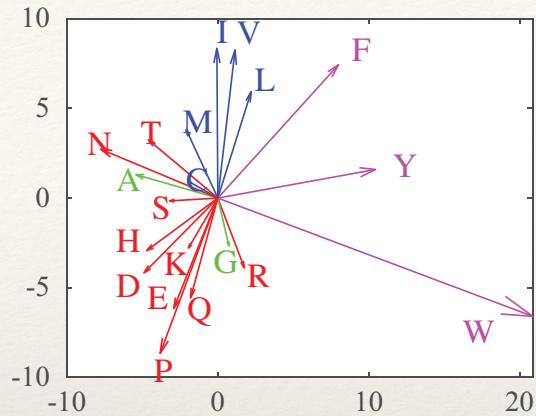
BLOSUM matrix is based on local similarities (blocks) of proteins rather than overall alignments.

Most common Scoring Matrices

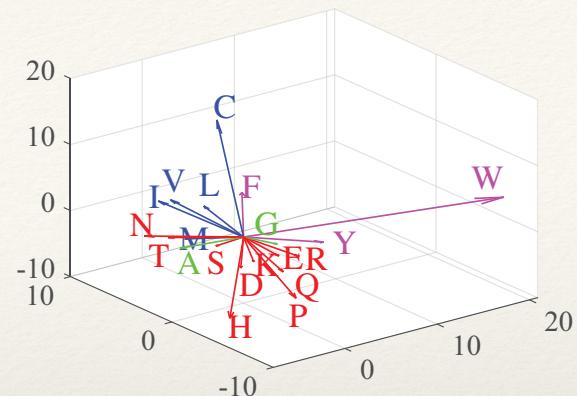
BLOSUM matrices (*Henikoff and Henikoff, 1992*)

- Start from “reliable” alignments of sequences with at least **XX** % identity
- Compute mutation probabilities
- Convert into Scores: -> BLOSUM**XX** matrix

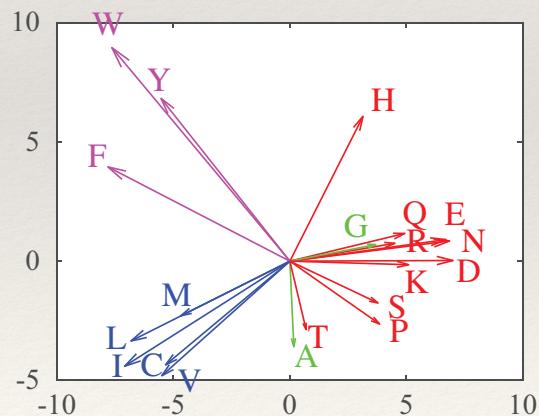
PAM matrices (*Dayhoff, 1974*)

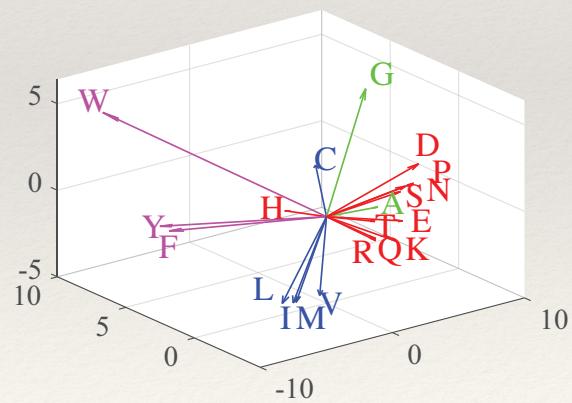

- Point Accepted Mutation
- Start with PAM score = 1: alignments of sequences with 1 mutation -> PAM1 matrix
- Generate successive PAM matrices:

$$\text{PAM}\text{XX} = (\text{PAM1})^{\text{XX}}$$


Example of a Scoring matrix: Blosum62

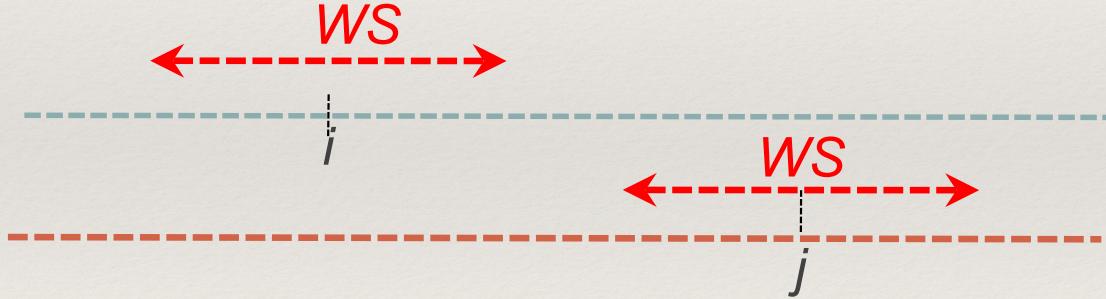
	C	S	T	P	A	G	N	D	E	Q	H	R	K	M	I	L	V	F	Y	W
C	9	-1	-1	-3	0	-3	-3	-3	-4	-3	-3	-3	-3	-1	-1	-1	-1	-2	-2	-2
S	-1	4	1	-1	1	0	1	0	0	0	-1	-1	0	-1	-2	-2	-2	-2	-2	-3
T	-1	1	4	1	-1	1	0	1	0	0	0	-1	0	-1	-2	-2	-2	-2	-2	-3
P	-3	-1	1	7	-1	-2	-1	-1	-1	-1	-2	-2	-1	-2	-3	-3	-2	-4	-3	-4
A	0	1	-1	-1	4	0	-1	-2	-1	-1	-2	-1	-1	-1	-1	-1	-2	-2	-2	-3
G	-3	0	1	-2	0	6	-2	-1	-2	-2	-2	-2	-2	-3	-4	-4	0	-3	-3	-2
N	-3	1	0	-2	-2	0	6	1	0	0	-1	0	0	-2	-3	-3	-3	-3	-2	-4
D	-3	0	1	-1	-2	-1	1	6	2	0	-1	-2	-1	-3	-3	-4	-3	-3	-3	-4
E	-4	0	0	-1	-1	-2	0	2	5	2	0	0	1	-2	-3	-3	-3	-3	-2	-3
Q	-3	0	0	-1	-1	-2	0	0	2	5	0	1	1	0	-3	-2	-2	-3	-1	-2
H	-3	-1	0	-2	-2	-2	1	1	0	0	8	0	-1	-2	-3	-3	-2	-1	2	-2
R	-3	-1	-1	-2	-1	-2	0	-2	0	1	0	5	2	-1	-3	-2	-3	-3	-2	-3
K	-3	0	0	-1	-1	-2	0	-1	1	1	-1	2	5	-1	-3	-2	-3	-3	-2	-3
M	-1	-1	-1	-2	-1	-3	-2	-3	-2	0	-2	-1	-1	5	1	2	-2	0	-1	-1
I	-1	-2	-2	-3	-1	-4	-3	-3	-3	-3	-3	-3	-3	1	4	2	1	0	-1	-3
L	-1	-2	-2	-3	-1	-4	-3	-4	-3	-2	-3	-2	-2	2	2	4	3	0	-1	-2
V	-1	-2	-2	-2	0	-3	-3	-3	-2	-2	-3	-3	-2	1	3	1	4	-1	-1	-3
F	-2	-2	-2	-4	-2	-3	-3	-3	-3	-3	-1	-3	-3	0	0	0	-1	6	3	1
Y	-2	-2	-2	-3	-2	-3	-2	-3	-2	-1	2	-2	-2	-1	-1	-1	-1	3	7	2
W	-2	-3	-3	-4	-3	-2	-4	-4	-3	-2	-2	-3	-3	-1	-3	-2	-3	1	2	11


BLOSUM30: 2D Projection


BLOSUM30: 3D Projection

BLOSUM62: 2D Projection

BLOSUM62: 3D Projection


DotPlot: Overview of Sequence Similarity

Build a table S :

- rows: Sequence 1
- columns: Sequence 2

Assign a score $S(i,j)$ to each entry in the table:

- select a window size WS

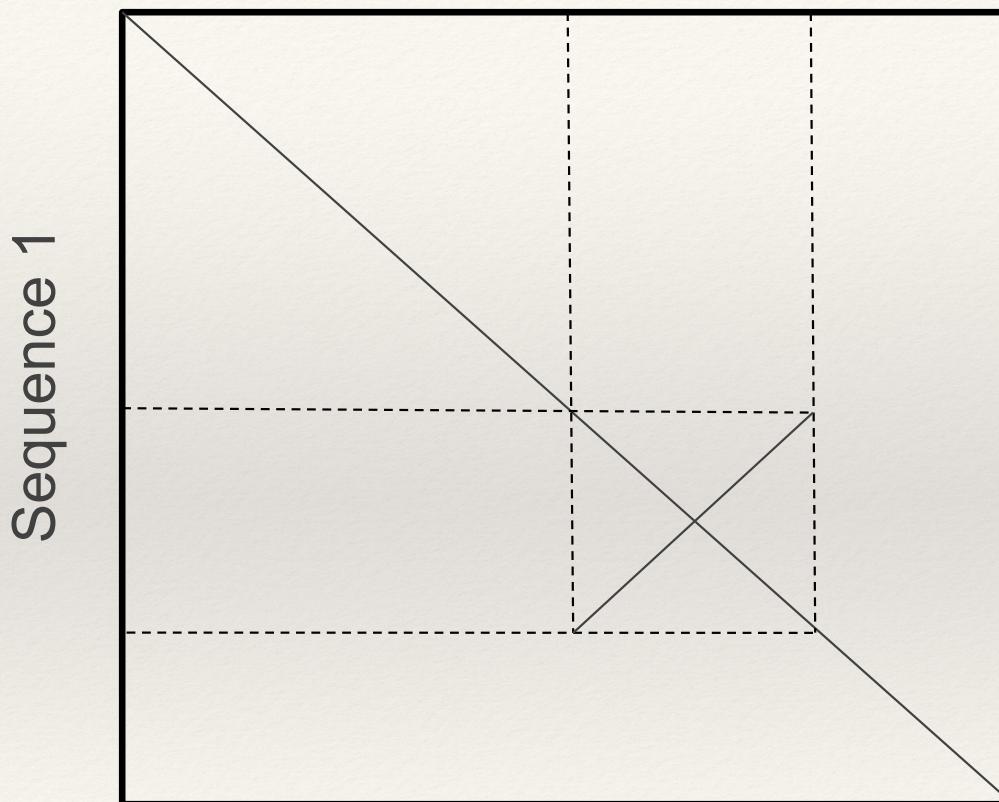


- Compare window around i with window around j \rightarrow Score(i,j)

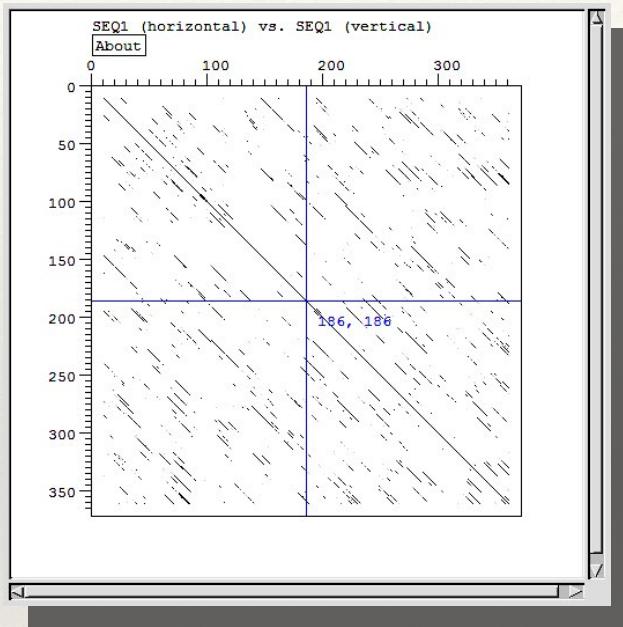
Display table of scores S

- show a dot at position (i,j) if Score(i,j) $>$ Threshold

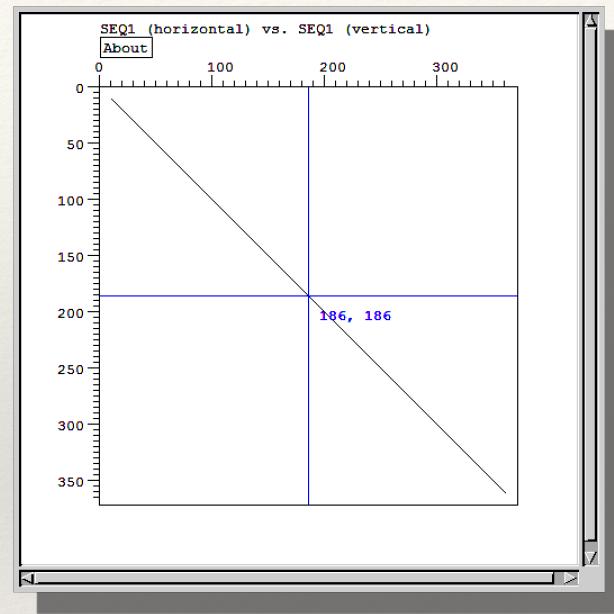
Patterns on DotPlot


Internal Repeat

Insertion (Deletion)


Divergence

Patterns on DotPlot


Sequence 2

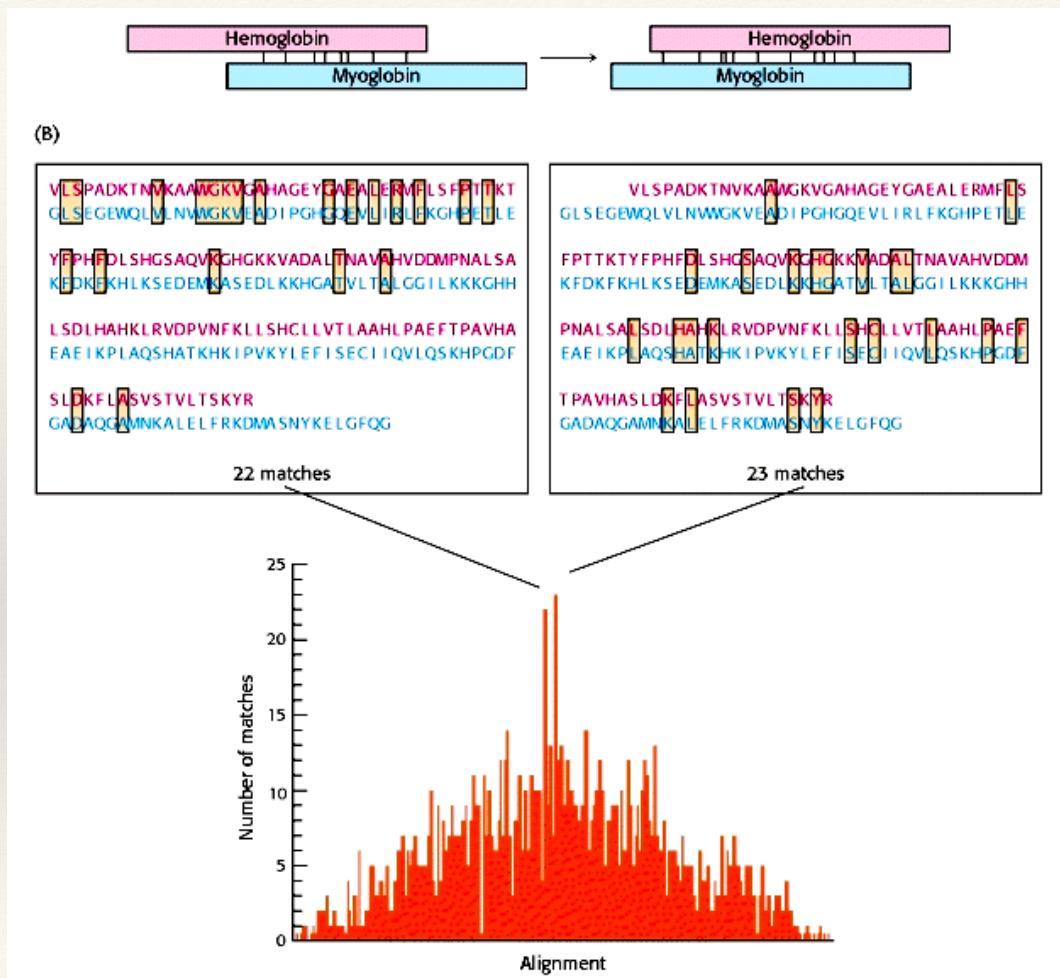
Patterns on DotPlot

With many details

Overall view - no details

What is sequence alignment?

Given two sequences of letters and a **scoring scheme** for evaluating letter matching, find the optimal pairing of letters from one sequence to the other.


Human hemoglobin (α chain)

VLSPADKTNVKAAWGKVGAAHAGEYGAEALERMFLSFPTTKTYFPHFDLSHG
SAQVKGHGKKVADALTNAVAHVDDMPNALSDLHAHKLRVDPVNFKLLS
HCLLVTLAAHLPAEFTPASLDKFLASVSTVLTSKYR

Human myoglobin

GLSDGEWQLVLNWNGKVEADIPGHGQEVLIRLFKGHPETLEKFDKFKHLKS
EDEMKAESDLKKHGATVLTALGGILKKKGHEAEIKPLAQSHATKHKIPVK
YLEFISECIIQVLQSKHPGDFGADAQGAMNKALELFRKDMASNYKELGFQG

Ungapped Alignment

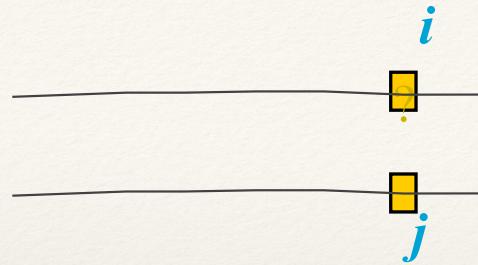
*(From Biochemistry,
Stryer, fifth edition)*

Alignment with gap(s)

How do we generate the “best” gapped alignment ?

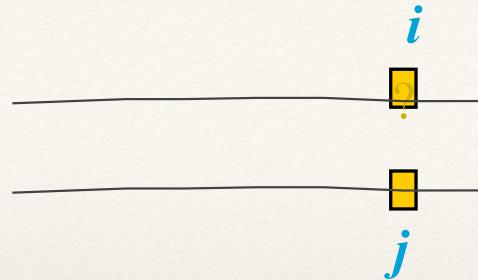
Total number of possible gapped alignment:

$$\sum_{k=1}^{\min(N,M)} \binom{N}{k} \binom{M}{k}$$

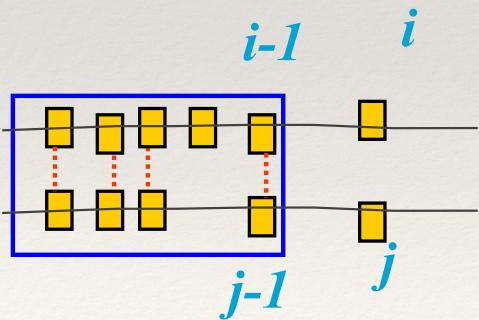

DP and Sequence Alignment

Key idea:

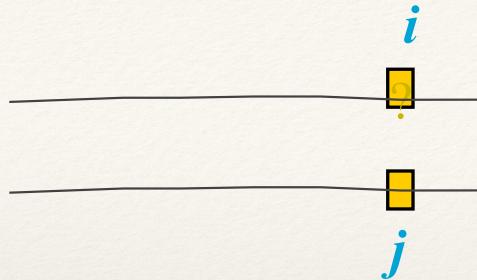
The score of the optimal alignment that ends at a given pair of positions in the sequences is the score of the best alignment previous to these positions plus the score of aligning these two positions.


DP and Sequence Alignment

Test all alignments that can lead to i aligned with j


DP and Sequence Alignment

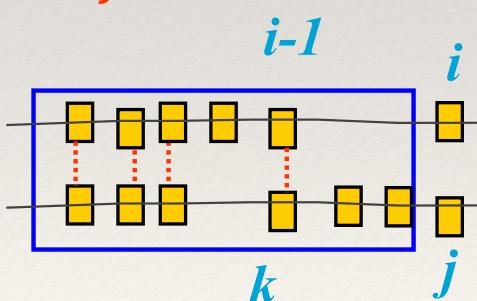
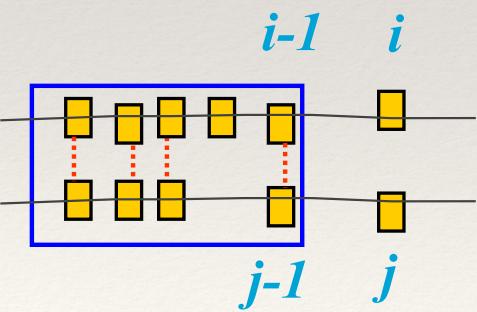
Test all alignments that can lead to i aligned with j


3 possibilities:

1) $i-1$ aligned with $j-1$

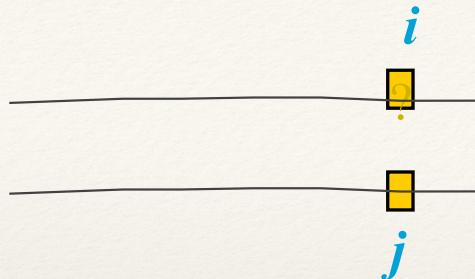
DP and Sequence Alignment

Test all alignments that can lead to i aligned with j

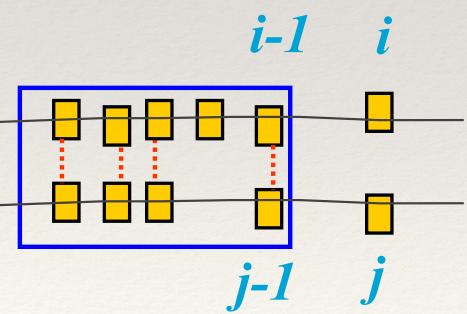



3 possibilities:

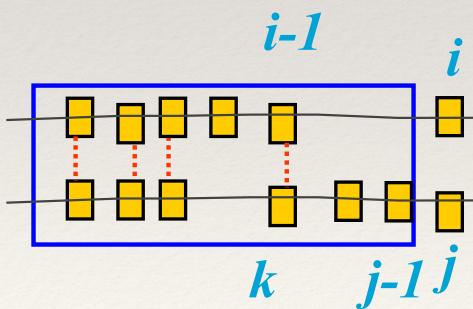
1) $i-1$ aligned with $j-1$


2) $i-1$ aligned with k ,

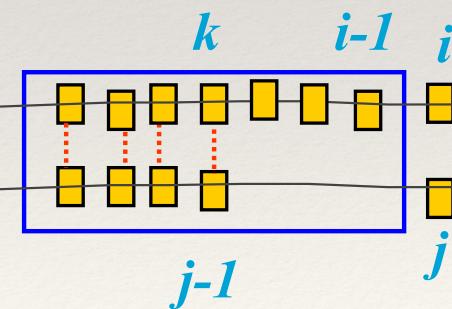
$1 \leq k \leq j-2$


DP and Sequence Alignment

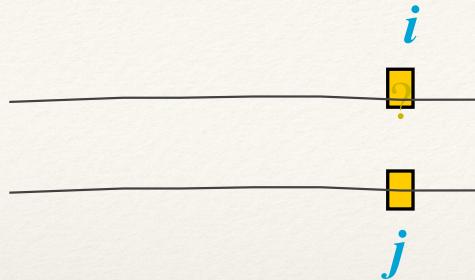
Test all alignments that can lead to i aligned with j


3 possibilities:

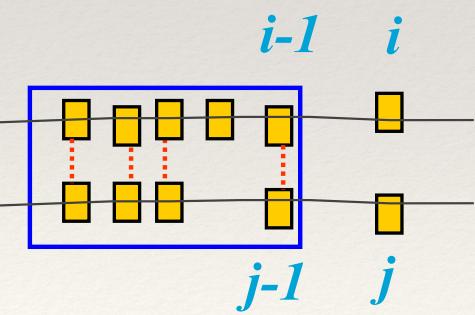
1) $i-1$ aligned with $j-1$


2) $i-1$ aligned with k ,

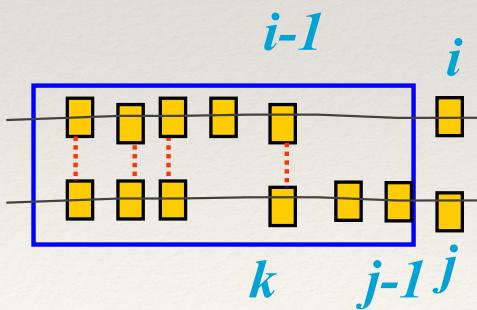
$$1 \leq k \leq j-2$$


3) $j-1$ aligned with l ,

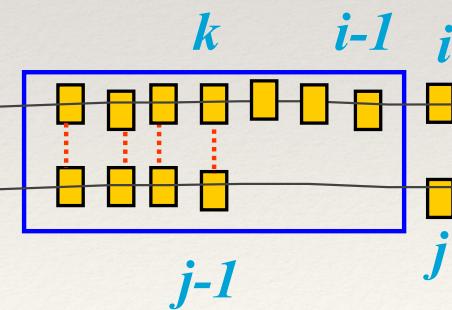
$$1 \leq l \leq i-2$$


DP and Sequence Alignment

Test all alignments that can lead to i aligned with j


3 possibilities:

1) $i-1$ aligned with $j-1$


2) $i-1$ aligned with k ,

$$1 \leq k \leq j-2$$

3) $j-1$ aligned with l ,

$$1 \leq l \leq i-2$$

Choose option that leads to the best score

Implementing the DP algorithm for sequences

Aligning 2 sequence S1 and S2 of lengths N and M:

- 1) Build a NxM alignment matrix A such that
 $A(i,j)$ is the optimal score for alignments
up to the pair (i,j)
- 2) Find the best score in A
- 3) Track back through the matrix to get
the optimal alignment of S1 and S2.

Implementing the DP algorithm for sequences

Aligning 2 sequence $S1$ and $S2$ of lengths N and M :

Example

Sequence 1: AWVCDEC

Sequence 2: AWEC

$\text{Score}(i,j) = 10 \text{ if } i=j, 0 \text{ otherwise}$

no gap penalty

Example

1) Initialize

	A	W	V	C	D	E	C
A	10	0	0	0	0	0	0
W	0						
E	0						
C	0						

Example

2) Propagate

	A	W	V	C	D	E	C
A	10	0	0	0	0	0	0
W	0	20					
E	0						
C	0						

Example

2) Propagate

	A	W	V	C	D	E	C
A	10	0	0	0	0	0	0
W	0	20	10				
E	0						
C	0						

Example

2) Propagate

	A	W	V	C	D	E	C
A	10	0	0	0	0	0	0
W	0	20	10	10	10	10	10
E	0	10	20	20	20	30	20
C	0	10	20	30	20	20	20

Example

3) Trace back

	A	W	V	C	D	E	C
A	10	0	0	0	0	0	0
W	0	20	10	10	10	10	10
E	0	10	20	20	20	30	20
C	0	10	20	30	20	20	40

Alignment:

AWVCDEC

Total score: 40

AW-----EC

Example 2

Alignments:

High Score: 30

AATGC

AATGC

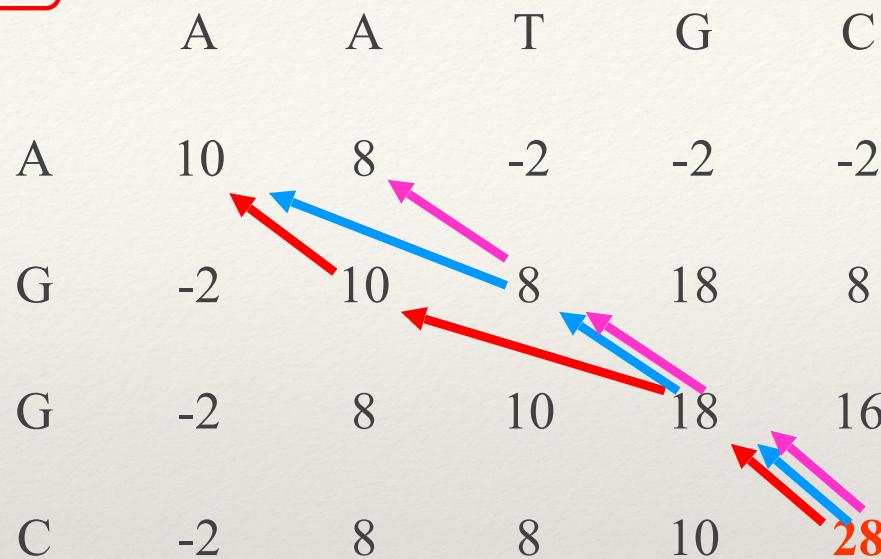
AATGC

AATG C

AATG C

AG GC

A GGC


AGGC

A GGC

A GGC

Example 3

Gap cost: -2

Alignments:

AATGC

AATGC

AATGC

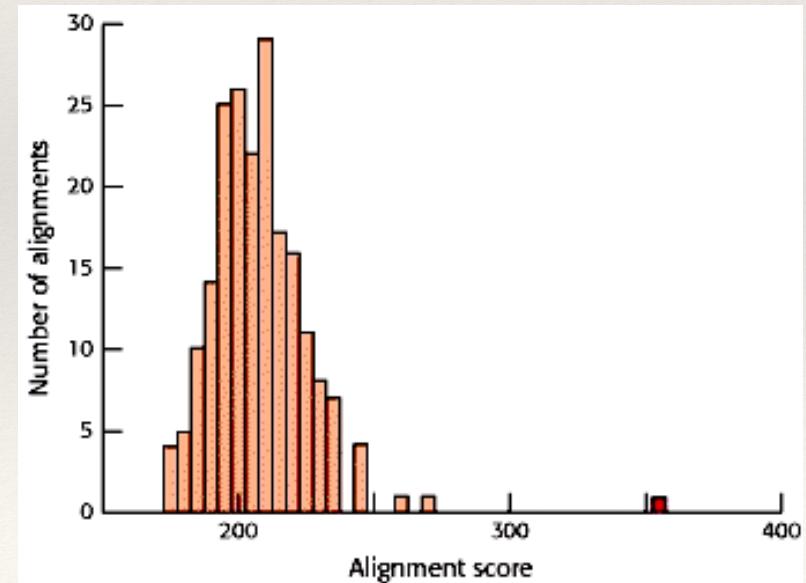
AG GC

A GGC

AGGC

High Score: 28

Statistical Significance of alignment: Shuffling



Score: 355

Shuffling a sequence:

THISISTHECORRECTSEQUENCE

TSTCRTQNHIHOESUCISERCEEE

Gap penalty

Most common model:

$$W_N = G_0 + N * G_1$$

W_N : gap penalty for a gap of size N

G_0 : cost of opening a gap

G_1 : cost of extending the gap by one

N : size of the gap

Global versus Local Alignment

Global alignment finds the arrangement that maximizes total score

Best known algorithm: Needleman and Wunsch.

Local alignment identifies highest scoring subsequences,
sometimes at the expense of the overall score.

Best known algorithm: Smith and Waterman.

Local alignment algorithm is just a variation of the global alignment algorithm!

Modifications for local alignment

- 1) The scoring matrix has negative values for mismatches
- 1) The minimum score for any (i, j) in the alignment matrix is 0.
- 1) The best score is found anywhere in the filled alignment matrix

These 3 modifications cause the algorithm to search for matching sub-sequences which are not penalized by other regions (modif. 2), with minimal poor matches (modif 1), which can occur anywhere (modif 3).

Global versus Local Alignment

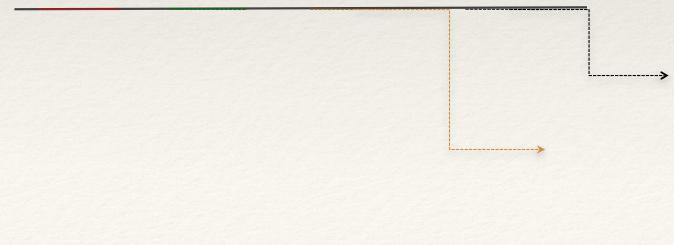
Match: +1; Mismatch: -2; Gap: -1

	A	C	C	T	G	S
A	1	-3	-3	-3	-3	-3
C	-3	2	1	-2	-2	-2
C	-3	1	3	-1	-1	-1
N	-3	-2	-1	1	0	0
S	-3	-2	-1	0	-1	1

	A	C	C	T	G	S
A	1	0	0	0	0	0
C	0	2	1	0	0	0
C	0	1	3	0	0	0
N	0	0	0	1	0	0
S	0	0	0	0	0	1

Global: ACCTGS ACCTGS
 ACC-NS ACCN-S

Local: ACC
 ACC


BLAST

(Basic Local Alignment Search Tool)

Main ideas:

1. Construct a list of all words in the query sequence
2. Scan database for sequences that contain one or more of the query words
3. Initiate a local alignment for each word match between query and database

Query sequence

Database

Original BLAST

1. Define dictionary

All words of length k

(typically $k=11$)

2. Scan database sequences for matches

with alignment score $\geq T$

(typically $T = k$)

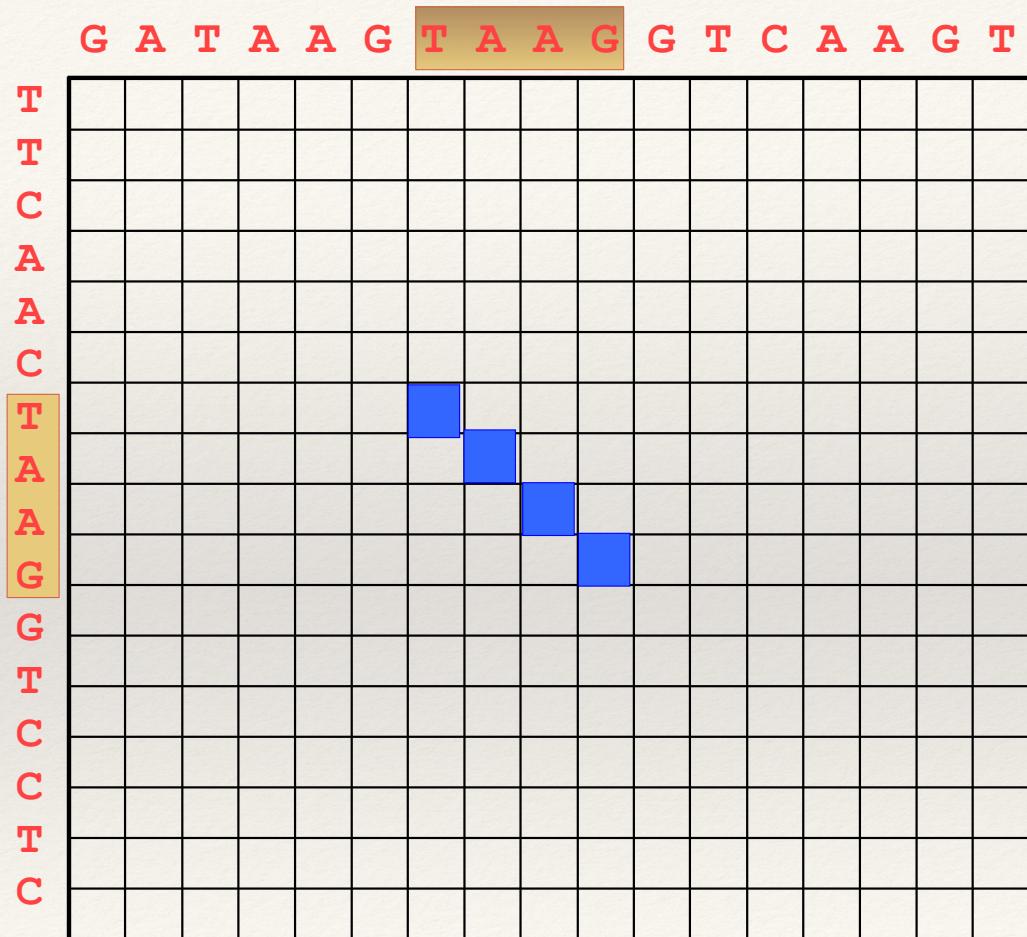
3. Generate alignment

ungapped extensions until score

below statistical threshold

4. Output all local alignments with scores

above the statistical threshold

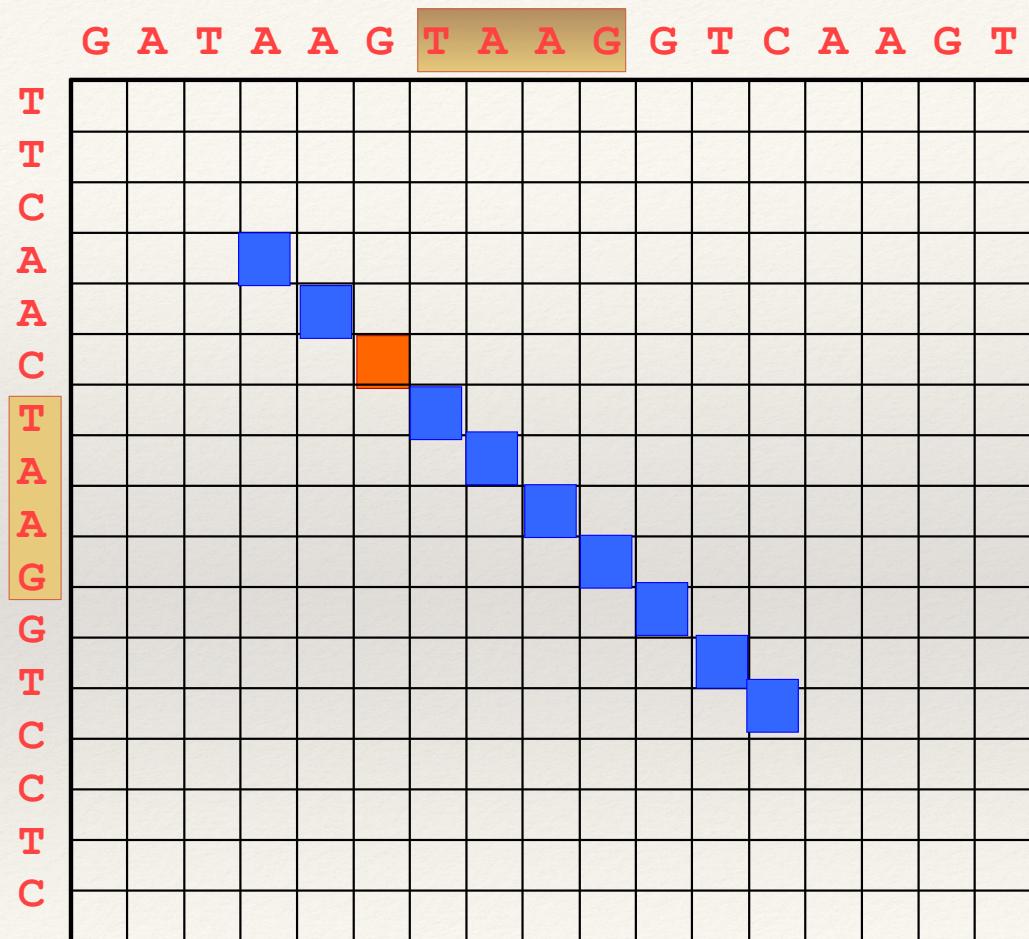


Original BLAST

An example:

$k = 4, T = 4$

1) The matching word TAAG initiates an alignment



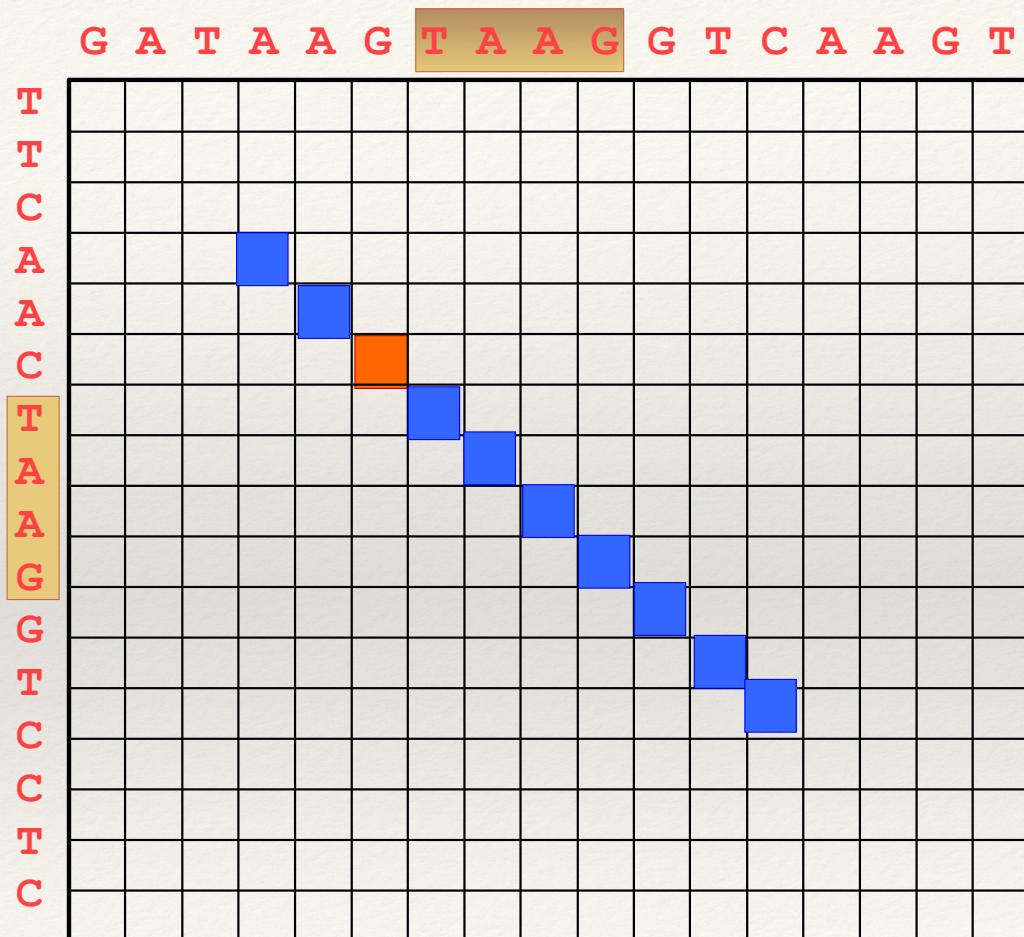
Original BLAST

An example:

$k = 4, T = 4$

- 1) The matching word AGGT initiates an alignment
- 2) Extension of the alignment to the left and right with no gap until alignment score falls below 50%

Original BLAST


An example:

$k = 4, T = 4$

- 1) The matching word AGGT initiates an alignment
- 2) Extension of the alignment to the left and right with no gap until alignment score falls below 50%

3) Output:

AAGTAAGGTC
AACTAAGGTC

Gapped BLAST

An example:

$k = 4, T = 4$

- 1) The matching word GGTC
initiates an alignment
- 2) Extend alignment in a band
around anchor

BLAST Portal

 BLAST *Basic Local Alignment Search Tool*

[Home](#) [Recent Results](#) [Saved Strategies](#) [Help](#)

► [NCBI/BLAST Home](#)

BLAST finds regions of similarity between biological sequences. [more...](#)

[Learn more about how to use the new BLAST design](#)

BLAST Assembled Genomes

Choose a species genome to search, or [list all genomic BLAST databases](#).

<input type="checkbox"/> Human	<input type="checkbox"/> Oryza sativa	<input type="checkbox"/> Gallus gallus
<input type="checkbox"/> Mouse	<input type="checkbox"/> Bos taurus	<input type="checkbox"/> Pan troglodytes
<input type="checkbox"/> Rat	<input type="checkbox"/> Danio rerio	<input type="checkbox"/> Microbes
<input type="checkbox"/> Arabidopsis thaliana	<input type="checkbox"/> Drosophila melanogaster	<input type="checkbox"/> Apis mellifera

Basic BLAST

Choose a BLAST program to run.

nucleotide blast	Search a nucleotide database using a nucleotide query <i>Algorithms:</i> blastn, megablast, discontiguous megablast
protein blast	Search protein database using a protein query <i>Algorithms:</i> blastp, psi-blast, phi-blast
blastx	Search protein database using a translated nucleotide query
tblastn	Search translated nucleotide database using a protein query
tblastx	Search translated nucleotide database using a translated nucleotide query

BLAST: Input

► [NCBI/ BLAST/ blastp suite: BLASTP programs search protein databases using a protein query.](#) [more...](#) [Reset page](#) [Bookmark](#)

Enter Query Sequence

Enter accession number, gi, or FASTA sequence [?](#) [Clear](#)

>1CTF:A|PDBID|CHAIN|SEQUENCE
AAEEKTEFDVILKAAGANKVAVIKAVRGATGLGLKEAKDLVESAPAALKEGVSKDDAEALKALEE
AGAEVEVK

Query subrange [?](#)

From
To

Or, upload file [Choose File](#) no file selected [?](#)

Job Title
Enter a descriptive title for your BLAST search [?](#)

Choose Search Set

Database [Non-redundant protein sequences \(nr\)](#) [?](#)

Organism [Optional](#)
Enter organism name or id--completions will be suggested

Enter organism common name, binomial, or tax id. Only 20 top taxa will be shown. [?](#)

Entrez Query [Optional](#)
Enter an Entrez query to limit search [?](#)

Program Selection

Algorithm **blastp (protein-protein BLAST)**
 PSI-BLAST (Position-Specific Iterated BLAST)
 PHI-BLAST (Pattern Hit Initiated BLAST)
Choose a BLAST algorithm [?](#)

BLAST
Search database **nr** using **Blastp (protein-protein BLAST)**
 Show results in a new window

► [Algorithm parameters](#)

BLAST Parameters

▼ Algorithm parameters

General Parameters

Max target sequences Select the maximum number of aligned sequences to display

Short queries Automatically adjust parameters for short input sequences

Expect threshold

Word size

Scoring Parameters

Matrix

Gap Costs Existence: Extension:

Compositional adjustments

Filters and Masking

Filter Low complexity regions

Mask Mask for lookup table only
 Mask lower case letters

BLAST Results

Distance tree of results [NEW](#) [Related Structures](#)

Sequences producing significant alignments:

		Score (Bits)	E Value	
prf 0601198A	polymerase beta, RNA	114	2e-24	
ref NP_660396.2	50S ribosomal protein L7/L12 [Buchnera aphid...	85.5	1e-15	G
ref NP_239876.1	50S ribosomal protein L7/L12 [Buchnera aphid...	84.0	3e-15	G
sp P41188 RL7_BUCAPI	50S ribosomal protein L7/L12 >gb AAM67607...	82.8	5e-15	
ref YP_001337990.1	50S ribosomal protein L7/L12 [Klebsiella ...	80.5	3e-14	G
ref YP_001454539.1	hypothetical protein CKO_03003 [Citrobact...	80.1	4e-14	G
ref YP_001174937.1	ribosomal protein L7/L12 [Enterobacter sp...	79.3	7e-14	G
ref YP_001439732.1	hypothetical protein ESA_03692 [Enterobac...	79.3	7e-14	G
ref NP_457918.1	50S ribosomal protein L7/L12 [Salmonella ent...	79.3	7e-14	G
ref YP_453813.1	50S ribosomal subunit protein L7/L12 [Sodali...	79.0	7e-14	G
ref YP_312899.1	50S ribosomal subunit protein L7/L12 [Shigel...	79.0	8e-14	G
ref NP_290617.1	50S ribosomal protein L7/L12 [Escherichia co...	78.6	1e-13	G
ref YP_001476514.1	ribosomal protein L7/L12 [Serratia protea...	78.2	1e-13	G
ref YP_588936.1	ribosomal protein L7/L12 [Baumannnia cicadell...	77.8	2e-13	G
ref NP_927791.1	50S ribosomal protein L7/L12 (L8) [Photorhab...	77.4	2e-13	G
pdb 2CYA 3	Chain 3, Structure Of The 50s Subunit Of A Pre-Tra...	77.4	2e-13	S
pdb 1RQU A	Chain A, Nmr Structure Of L7 Dimer From E.Coli >pd...	77.4	2e-13	S
ref NP_777674.1	50S ribosomal protein L7/L12 [Buchnera aphid...	77.4	2e-13	G
ref YP_219023.1	50S ribosomal protein L7/L12 [Salmonella ent...	77.4	3e-13	G
ref YP_048349.1	50S ribosomal protein L7/L12 [Erwinia caroto...	77.4	3e-13	
ref ZP_00798031.1	COG0222: Ribosomal protein L7/L12 [Yersinia p...	75.5	9e-13	
ref ZP_00827822.1	COG0222: Ribosomal protein L7/L12 [Yersini...	75.5	1e-12	
ref ZP_00821082.1	COG0222: Ribosomal protein L7/L12 [Yersini...	75.5	1e-12	

Statistics of Protein Sequence Alignment

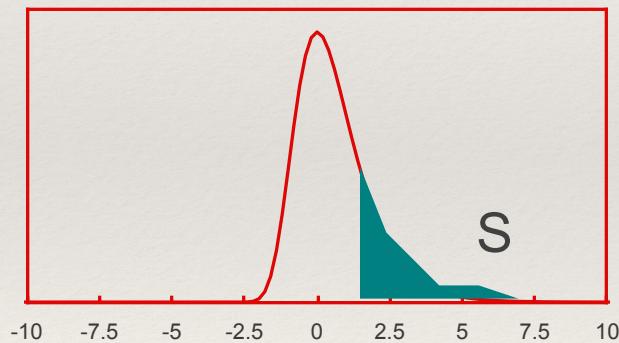
- ❖ *Statistics of global alignment:*

Unfortunately, not much is known! Statistics based on Monte Carlo simulations (shuffle one sequence and recompute alignment to get a distribution of scores)

- ❖ *Statistics of local alignment*

Well understood for ungapped alignment. Same theory probably apply to gapped-alignment

Statistics of Protein Sequence Alignment


What is a local alignment ?

“Pair of equal length segments, one from each sequence, whose scores can not be improved by extension or trimming. These are called high-scoring pairs, or HSP”

<http://www.people.virginia.edu/~wrp/cshl98/Altschul/Altschul-1.html>

The E-value for a sequence alignment

HSP scores follow an extreme value distribution, characterized by two parameters, K and λ .

The expected number of HSP with score at least S is given by:

$$E = Kmn \exp(-\lambda S)$$

m, n : sequence lengths

E : E-value

Raw scores have little meaning without knowledge of the scoring scheme used for the alignment, or equivalently of the parameters K and λ .

Scores can be normalized according to:

$$S' = \frac{\lambda S - \ln(K)}{\ln(2)}$$

S' is the **bit score** of the alignment.

The E-value can be expressed as:

$$E = mn2^{-S'}$$

The P-value of a sequence alignment

The number of random HSP with score greater or equal to S follows a Poisson distribution:

$$P(X \text{ random HSP with score } \geq S) = \exp(-E) \frac{E^X}{X!}$$

(E: E-value)

Then:

$$P(0 \text{ random HSP with score } \geq S) = \exp(-E)$$

$$P_{val} = P(\text{at least 1 random HSP with score } \geq S) = 1 - \exp(-E)$$

Note: when $E \ll 1$, $P \approx E$

The database E-value for a sequence alignment

2) Longer sequences are more likely to be related to the query:

$$E_{DB} = N_S K m n \exp(-\lambda S)$$

BLAST reports E_{DB2}

$$E_{DB2} = K m N_R \exp(-\lambda S)$$

Why multiple sequence alignment?

Seq1 : AALG**C**LVKDYFPEP--VTVS**W**NSG---

Seq2 : VSLT**C**LVKGFYPSD--IAVE**WW**SNG--

Why multiple sequence alignment?

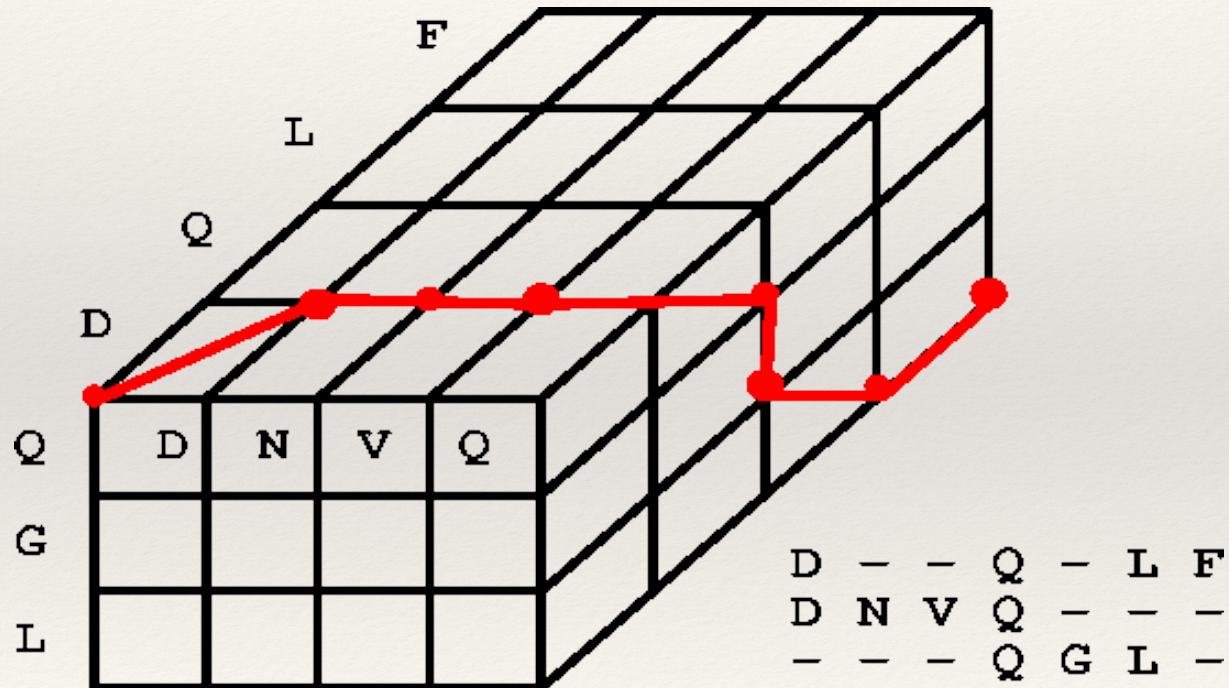
Seq1 : AALG**C**LVKDYFPEP--VTVS**W**NSG---

Seq2 : VSLT**C**LVKGFYPSD--IAVE**W**WSNG--

Seq3 : VTIS**C**TGSSSNIGAG-NHVK**W**Y**Q****Q****L****P****G**

Seq4 : VTIS**C**TGTSSNIIGS--ITVN**W**Y**Q****Q****L****P****G**

Seq5 : LRLS**C**SSSGFIFSS--YAMY**W**VR**Q****A****P****G**


Seq6 : LSLT**C**TVSGTSFDD--YYST**W**VR**Q****P****P****G**

Seq7 : PEVT**C**VVVVDVSHEDPQVKFN**W**YVDG--

Seq8 : ATLV**C**LISDFYPGA--VTVA**W**KADS--

MSA: Dynamic programming?

Theoretically, it is possible to extend the dynamic programming technique to N sequences.

MSA: Dynamic programming?

- One of the most important properties of an algorithm is how its execution time increases as the problem is made larger.
This is **the computational complexity** of the algorithm
- There is a notation to describe the algorithmic complexity, called **the big-O notation**.
If we have a problem of size (i.e. number of input data points) n , then an algorithm takes **$O(n)$** time if the time increases linearly with n .
- It is important to realize that an algorithm that is **quick on small problems may be totally useless on large problems** if it has a bad $O()$ behavior.

MSA: Dynamic programming?

Standard description of algorithms, where n is the size of the problem, and c is a constant:

Complexity	Type	Computing time for n=1000 (1 operation=1s)
$O(c)$	Dream...	Seconds
$O(\log(n))$	Really good	10 seconds
$O(n)$	good	1000 seconds = 5 mins
$O(n^2)$	Not so good	10^6 seconds = 11.5 days
$O(n^3)$	Bad	10^9 seconds = 31 years
$O(c^n)$	Catastrophic!	Millions of years!!

MSA: Dynamic programming?

Computational complexity of dynamic programming:

- Two sequences of length M : **$O(M^2)$**
- Three sequences of length M: **$O(M^3)$**
- N sequences of length M: **$O(M^N)$**

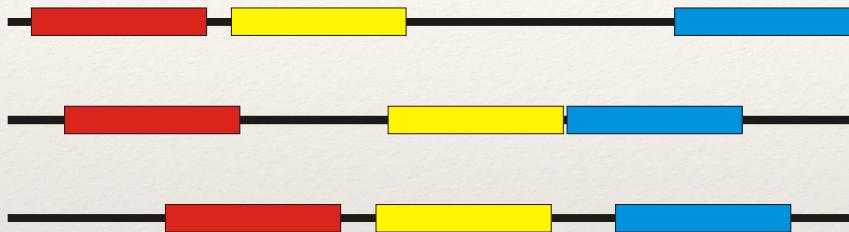
-> dynamic programming is not a reasonable option for aligning multiple sequences!

MSA: Approximate methods

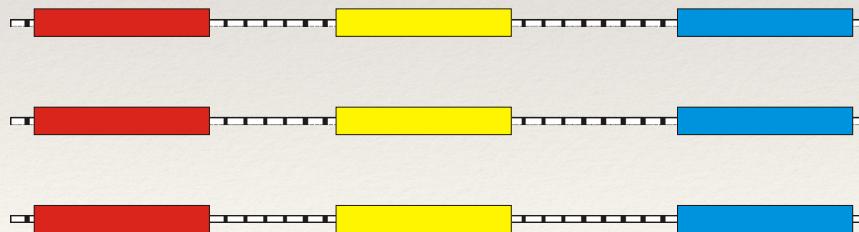
1. Progressive global alignment

Start with the most similar sequences and builds the alignment by adding the rest of the sequences

2. Iterative methods


Start by making alignments of small group of sequences and then revise the alignment for better results

3. Alignment based on small conserved domains


4. Alignment based on statistical or probabilistic models of the sequence

Multiple sequence alignment: using conserved domains

*Sequences often contain highly
conserved regions*

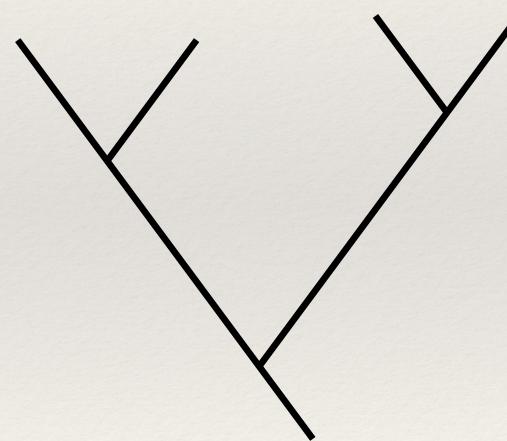
These regions can be used for an initial alignment

How to generate a multiple sequence alignment?

Raw Alignment

Human N Y L S

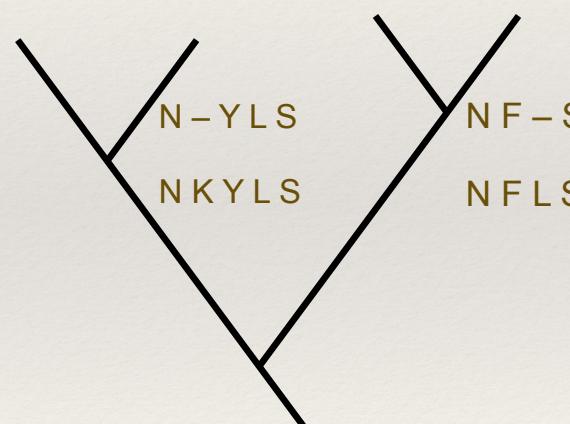
Chimp N K Y L S


Gorilla N F S

Orangutan N F L S

How to generate a multiple sequence alignment?

Sequence elements are not truly independent but related by phylogeny:


	Raw Alignment	NYLS	NKYLS	NFS	NFLS
		Human	Chimp	Gorilla	Orangutan
Human	N Y L S				
Chimp	N K Y L S				
Gorilla	N F S				
Orangutan	N F L S				

How to generate a multiple sequence alignment?

Sequence elements are not truly independent but related by phylogeny:

Raw Alignment		NYLS	NKYLS	NFS	NFLS
		Human	Chimp	Gorilla	Orangutan
Human	NYLS				
Chimp	NKYLS		N-YLS		NF-S
Gorilla	NFS		NKYLS		NFLS
Orangutan	NFLS				

How to generate a multiple sequence alignment?

Sequence elements are not truly independent but related by phylogeny:

Raw Alignment

Human NYLS

Chimp NKYS

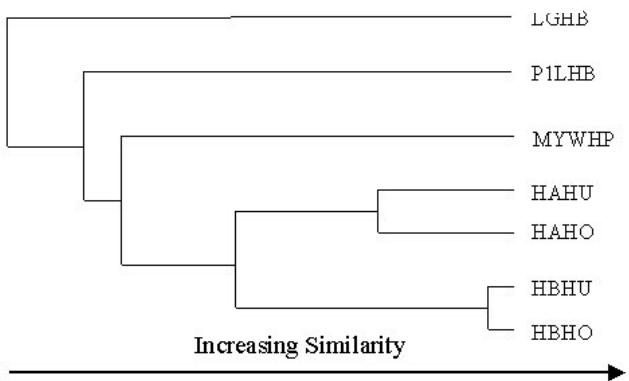
Gorilla NFS

OrangutanNFLS

NYLS NKYLS NFS NFLS
Human Chimp Gorilla Orangutan

Multiple sequence alignment: Progressive method

A) Perform pairwise alignments

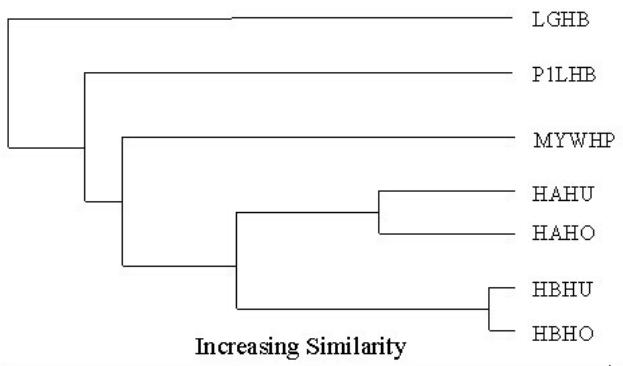

	HAHU	HBHU	HAHO	HBHO	MYWHP	P1LHB	LGHB
HAHU							
HBHU	21.1						
HAHO	32.9	19.7					
HBHO	20.7	39.0	20.4				
MYWHP	11.0	9.8	10.3	9.7			
P1LHB	9.3	8.6	9.6	8.4	7.0		
LGHB	7.1	7.3	7.5	7.4	7.3	4.3	

Multiple sequence alignment: Progressive method

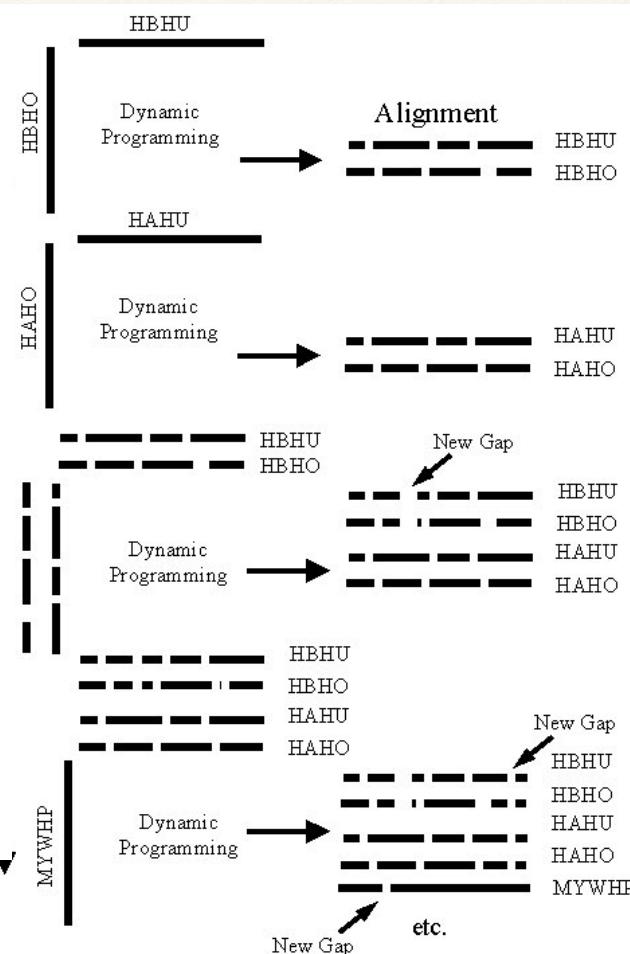
A) Perform pairwise alignments

	HAHU	HBHU	HAHO	HBHO	MYWHP	P1LHB	LGHB
HAHU							
HBHU	21.1						
HAHO	32.9	19.7					
HBHO	20.7	39.0	20.4				
MYWHP	11.0	9.8	10.3	9.7			
P1LHB	9.3	8.6	9.6	8.4	7.0		
LGHB	7.1	7.3	7.5	7.4	7.3	4.3	

B) Cluster based on similarity



Multiple sequence alignment: Progressive method


A) Perform pairwise alignments

	HAHU	HBHU	HAHO	HBHO	MYWHP	P1LHB	LGHB
HAHU							
HBHU	21.1						
HAHO	32.9	19.7					
HBHO	20.7	39.0	20.4				
MYWHP	11.0	9.8	10.3	9.7			
P1LHB	9.3	8.6	9.6	8.4	7.0		
LGHB	7.1	7.3	7.5	7.4	7.3	4.3	

B) Cluster based on similarity

C) Generate Multiple Sequence Alignment

Some References on Alignments

Global Alignment:

Needleman, S.B. and Wunsch, C.D. (1970). "A general method applicable to the search for similarities in the amino acid sequence of two proteins". *Journal of Molecular Biology* 48 (3): 443–53

Local alignment:

Smith, T.F. and Waterman, M.S. (1981) "Identification of Common Molecular Subsequences". *Journal of Molecular Biology* 147: 195–197

ClustalW:

Thompson, J. D., Higgins, D.G. and Gibson, T.J. (1994) "CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, positions-specific gap penalties and weight matrix choice".

Nucleic Acids Research, 22:4673-4680

What have we learnt?

1) **Sequence analysis** is one of the keys that will help us unravel the information coming from Genomics

2) Vocabulary

Analogy: The similarity of characteristics between two species that are not closely related

Homology: Similarity in characteristics resulting from shared ancestry

- **Paralog:** Homologous sequences are paralogous if they were separated by a gene duplication event
- **Ortholog:** Homologous sequences are orthologous if they were separated by a speciation event

3) In bioinformatics we often assume that **sequence similarity implies homology**. However we do need to be cautious.

What have we learnt?

- 4) Sequence analysis starts with **an analysis of its content**

- 1) **DNAs:**

- Chargaff rule2:** the composition of DNA varies from one species to another

- 2) **Proteins:**

- Tri-peptide content identifies the kingdom of life
(bacteria, archea or eukaryot)

- 5) **DotPlots** are very useful, qualitative tools for sequence comparison
- 4) **Scoring** between sequences is usually based on **substitution matrices**

Most common matrices: **PAM** and **BLOSUM**

What have we learnt?

1. **Dynamic programming (DP)** is an algorithm for aligning two sequences that is guaranteed to generate the **optimal alignment**, under the hypothesis that the **scores are additive**.
2. There are two variants of DP used for sequence analysis
Global alignment: Needleman and Wunsch
Local alignment: Smith and Waterman
3. DP is too slow for comparing a sequence with a large database
4. **BLAST** provides a heuristic method for detecting sequences that are similar
5. **BLAST is best for detection** and should not be trusted for the alignment itself

What have we learnt?

6) Multiple sequence alignment: definition

A multiple sequence alignment is an alignment of $n > 2$ sequences obtained by inserting gaps ("–") into sequences such that the resulting sequences have all length L . MSA can help to reveal biological facts about proteins, to establish homology,...

7) Difficulties in generating MSA

Most pairwise alignment algorithms are too complex to be used for N -wise alignments

8) Three main types of MSA algorithms:

- Progressive global alignment (starts with the most alike sequences)
 - * e.g., ClustalW, ClustalX
- Iterative methods (initial alignment of groups of sequences that are revised)
 - * MultAlin, PRRP, SAGA
- Alignments based on locally conserved patterns