

Sequence Analysis

- ◊ ECS129
- ◊ Patrice Koehl

Sequence Analysis: Outline

1. Why do we compare sequences?
2. Sequence comparison: from qualitative to quantitative methods
3. Deterministic methods: Dynamic programming
4. Heuristic methods: BLAST
5. Multiple Sequence Alignment

Similarity: Homology vs Analogy

Homology: Similarity in characteristics resulting from shared ancestry.

Analogy: The similarity of characteristics between two species

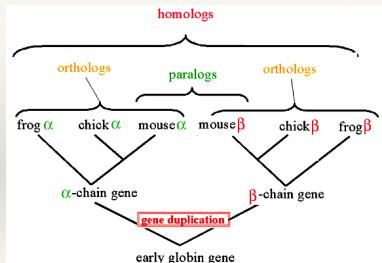
that are not closely related; attributable to convergent evolution.

Two sisters: homologs

Two "Elvis": analogs

Homology: Orthologs and Paralogs

Homology: Similarity in characteristics resulting from shared ancestry.

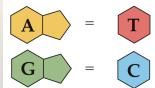

Paralogy: Homologous sequences are paralogous if they were separated by a gene duplication event

Orthology: Homologous sequences are orthologous if they were separated by a speciation event

Further reading:

Koonin EV (2005). "Orthologs, paralogs, and evolutionary genomics".
Annu. Rev. Genet. 39:309-338.

Homology: Orthologs and Paralogs



Applications of Sequence Analysis

- Sequencing projects, assembly of sequence data
- Evolutionary history
- Identification of functional elements in sequences
- gene prediction
- Classification of proteins
- Comparative genomics
- RNA structure prediction
- Protein structure prediction
- Health Informatics

DNA sequence: Chargaff's rules

Rule 1: In double stranded DNA, the amount of guanine is equal to cytosine and the amount of adenine is equal to thymine

(basis of Watson Crick base pairing)

Rule 2: the composition of DNA varies from one species to another; in particular in the relative amounts of A, G, T, and C bases

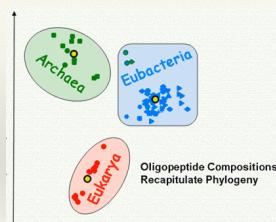

DNA sequence: Chargaff's rules

Table 3-2 Data Leading to the Formulation of Chargaff's Rules

Source	Adenine	Thymine	Adenine	Guanine	Purines
	to Guanine	to Cytosine	to Thymine	to Cytosine	to Pyrimidines
Ox	1.29	1.43	1.04	1.00	1.1
Human	1.56	1.75	1.00	1.00	1.0
Hen	1.45	1.29	1.06	0.91	0.99
Salmon	1.43	1.43	1.02	1.02	1.02
Wheat	1.22	1.18	1.00	0.97	0.99
Yeast	1.67	1.92	1.03	1.20	1.0
<i>Haemophilus</i> reflexzae	1.74	1.54	1.07	0.91	1.0
<i>E. coli</i> K2	1.05	0.95	1.09	0.99	1.0
Avian tubercle bacillus	0.4	0.4	1.09	1.08	1.1
<i>Serratia marcescens</i>	0.7	0.7	0.95	0.86	0.9
<i>Bacillus subtilis</i>	0.7	0.6	1.12	0.89	1.0

SOURCE: After E. Chargaff et al., *J. Biol. Chem.* 177 (1949).

Comparing sequences based on their tri-peptide content

Proteins: Structure, Function and Genetics 54, 20-40 (2004)

Comparing individual letters

Scores are usually stored in a “weight” matrix also called “substitution” matrix or “matching” matrix.

Defining the “proper” matrix is still an active area of research:

1. Identity matrix

2. Chemical property matrix

In this matrix amino acids or nucleotides are intuitively classified on the basis of their chemical properties

3. Substitution-based matrix

Dayhoff matrix

PAM matrices

Blosum matrices

Substitution Matrices

Dayhoff matrix was created in 1978 based on few closely related (> 85% identity) sequences available this time (1500 aligned amino-acids).

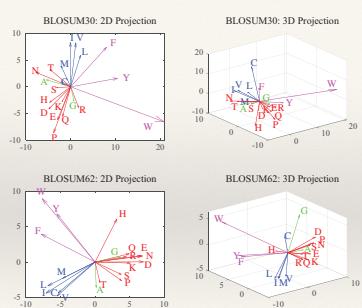
PAM-family of matrices is a simple update of the original Dayhoff matrix.

Gonnet matrices were created by exhaustive alignment of all Database sequences in 1992.

BLOSUM matrix is based on local similarities (blocks) of proteins rather than overall alignments.

Most common Scoring Matrices

BLOSUM matrices (Henikoff and Henikoff, 1992)


- Start from “reliable” alignments of sequences with at least XX % identity
- Compute mutation probabilities
- Convert into Scores: -> BLOSUMXX matrix

PAM matrices (Dayhoff, 1974)

- Point Accepted Mutation
- Start with PAM score = 1: alignments of sequences with 1 mutation -> PAM1 matrix
- Generate successive PAM matrices:

Example of a Scoring matrix: BLOSUM62

	C	S	T	P	A	G	N	D	E	Q	H	R	K	M	I	L	V	F	Y	W
C	0	-1	-1	-3	-1	-3	-3	-2	-4	-3	-3	-2	-3	-4	-1	-1	-4	-2	-2	-2
S	-1	0	-1	-1	-1	0	1	0	0	0	-2	-2	-1	-2	-2	-2	-2	-2	-2	-3
T	-1	1	0	-1	-1	1	0	1	0	0	-2	-1	0	-1	-2	-2	-2	-2	-2	-3
P	-3	-1	-1	0	-1	-2	-1	-1	-2	-2	-1	-2	-3	-1	-2	-3	-3	-4	-4	-4
A	0	1	-1	-1	0	0	-1	-2	-1	-2	0	-1	-1	-1	-1	-1	-2	-2	-2	-3
G	-3	0	-1	-2	0	0	-2	-1	-2	-2	-2	0	-2	-3	-1	0	0	-3	-3	-2
N	2	1	0	-2	0	0	0	0	0	0	0	0	0	0	0	0	0	-3	-2	-2
D	-4	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	-3	-3	-3
E	-4	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	-3	-3	-3
Q	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	-3	-3	-3
H	-2	-1	0	0	-2	-1	-2	-1	0	0	0	0	0	0	0	0	-2	-2	-2	-2
R	-2	-3	-1	-2	-1	-2	-2	-1	1	0	0	0	0	0	0	0	-2	-2	-2	-3
K	-1	0	0	-1	0	-2	0	-1	1	1	-1	0	0	0	0	0	-3	-2	-3	-3
M	-1	-4	-1	-2	0	-2	-1	0	0	0	0	0	0	0	0	0	0	0	0	-1
I	-1	-2	-2	-3	0	-4	-3	-2	-3	-3	-3	-3	-3	-3	-3	-3	-3	-3	-3	-3
L	-1	-2	-2	-3	0	-4	-3	-2	-3	-3	-3	-3	-3	-3	-3	-3	-3	-3	-3	-3
V	-2	-2	-2	-3	0	-4	-3	-2	-3	-3	-3	-3	-3	-3	-3	-3	-3	-3	-3	-3
F	-2	-2	-2	-3	0	-4	-3	-2	-3	-3	-3	-3	-3	-3	-3	-3	-3	-3	-3	-3
Y	-2	-2	-2	-3	0	-4	-3	-2	-3	-3	-3	-3	-3	-3	-3	-3	-3	-3	-3	-3
W	-2	-3	-4	0	1	-2	-4	-3	-2	-2	-2	-2	-2	-2	-2	-2	-3	1	2	0

DotPlot: Overview of Sequence Similarity

Build a table S:

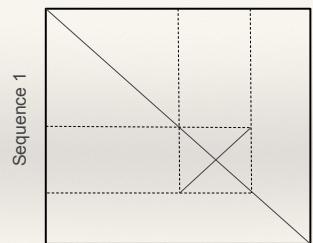
- rows: Sequence 1
- columns: Sequence 2

Assign a score $S(i,j)$ to each entry in the table:

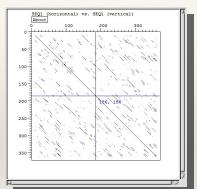
- select a window size WS
- Compare window around i with window around j $\rightarrow S(i,j)$

Display table of scores S

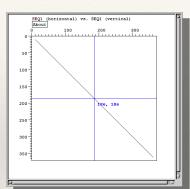
- show a dot at position (i,j) if $S(i,j) > \text{Threshold}$


Patterns on DotPlot

Internal Repeat Insertion (Deletion) Divergence


Patterns on DotPlot

Sequence 2

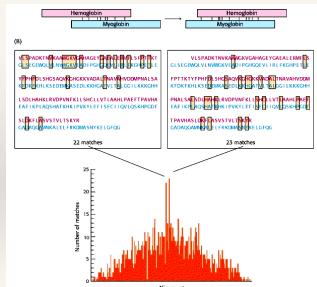


Sequence 1

Patterns on DotPlot

With many details

Overall view - no details


What is sequence alignment?

Given two sequences of letters and a **scoring scheme** for evaluating letter matching, find the optimal pairing of letters from one sequence to the other.

Human hemoglobin (α chain)
 VLSPADKTNVKAWVKVAGAEGEAELEMFLSFPTTTKTYFPFDSLHGSQAVQGHGKVKVADALTNAVAHVDDMPNALSAIDLHAKLRLVDPVNFKLLSNCLLVTLAHLPAETPAVHASLOKFLASVSTVLTSKRY

Human myoglobin
 GLSDGEWQLVLNWQCKVEADIPGHQEVLIQLFKGHPEITLEKFDKFKHLKSEDEMKAESDILKKHGATVITLGGILKKKGHEAEIKPLAQSHATKHKIPVKYLEFISECIQVILQSKHPGDGFADAGCANNKALEIFRKDMASNYKELGFQQ

Ungapped Alignment

Alignment with gap(s)

Hemoglobin α VLSPADKTNVKAWVKVAGAEGEAELEMFLSFPTTTKTYFPF_{Gap} H
Myoglobin GLSDGEWQLVLNWQCKVEADIPGHQEVLIQLFKGHPEITLEKFDKFKHLKSE

LSHCAQVWQIGKVKVADALTNAVAHVDDMPNALSAIDLHAKLRLVDPVNFKLLEMKAESDILKKHGATVITLGGILKKKGHEAEIKPLAQSHATKHKIPVKYLEF

LSHCLLTLAHLPAETPAVHASLOKFLASVSTVLTSKRY
 I SECIIQVILQSKHPGDGFADAGCANNKALEIFRKDMASNYKELGFQQ

How do we generate the "best" gapped alignment ?

Total number of possible gapped alignment:

$$\sum_{k=1}^{\min(N,M)} \binom{N}{k} \binom{M}{k}$$

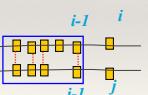
DP and Sequence Alignment

Key idea:

The score of the optimal alignment that ends at a given pair of positions in the sequences is the score of the best alignment previous to these positions plus the score of aligning these two positions.

DP and Sequence Alignment

Test all alignments that can lead to i aligned with j


DP and Sequence Alignment

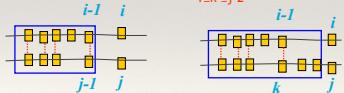
Test all alignments that can lead to i aligned with j

3 possibilities:

1) i-1 aligned with i-1

DP and Sequence Alignment

Test all alignments that can lead to i aligned with j



3 possibilities:

1) $i-1$ aligned with $j-1$

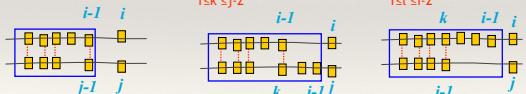
2) $i-1$ aligned with k ,

$1 \leq k \leq j-2$

DP and Sequence Alignment

Test all alignments that can lead to i aligned with j

3 possibilities:


1) $i-1$ aligned with $j-1$

2) $i-1$ aligned with k ,

$1 \leq k \leq j-2$

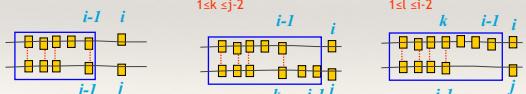
3) $j-1$ aligned with l ,

$1 \leq l \leq i-2$

DP and Sequence Alignment

Test all alignments that can lead to i aligned with j

3 possibilities:


1) $i-1$ aligned with $j-1$

2) $i-1$ aligned with k ,

$1 \leq k \leq j-2$

3) $j-1$ aligned with l ,

$1 \leq l \leq i-2$

Choose option that leads to the best score

Implementing the DP algorithm for sequences

Aligning 2 sequence S1 and S2 of lengths N and M:

- 1) Build a NxM alignment matrix A such that
 $A(i,j)$ is the optimal score for alignments
up to the pair (i,j)
- 2) Find the best score in A
- 3) Track back through the matrix to get
the optimal alignment of S1 and S2.

Implementing the DP algorithm for sequences

Aligning 2 sequence S1 and S2 of lengths N and M:

Example

Sequence 1: AWVCDEC

Sequence 2: AWEC

Score(i,j) = 10 if $i=j$, 0 otherwise

no gap penalty

Example

1) Initialize

	A	W	V	C	D	E	C
A	10	0	0	0	0	0	0
W	0						
E	0						
C	0						

Example

2) Propagate

	A	W	V	C	D	E	C
A	10	0	0	0	0	0	0
W	0	20					
E	0						
C	0						

Example

2) Propagate

	A	W	V	C	D	E	C
A	10	0	0	0	0	0	0
W	0	20	10				
E	0						
C	0						

Example

2) Propagate

	A	W	V	C	D	E	C
A	10	0	0	0	0	0	0
W	0	20	10	10	10	10	10
E	0	10	20	20	20	30	20
C	0	10	20	30	20	30	20

Example

3) Trace back

	A	W	V	C	D	E	C
A	10	0	0	0	0	0	0
W	0	20	10	10	10	10	10
E	0	10	20	20	20	30	20
C	0	10	20	30	20	20	40

Alignment:

AWVCDEC

Total score: 40

AW-----EC

Example 2

	A	A	T	G	C
A	10	10	0	0	0
G	0	10	10	20	10
G	0	10	10	20	20
C	0	10	10	10	30

Alignments:

AATGC **AATGC** **AATGC** **AATG C** **AATG C**
AG GC **A GGC** **AGGC** **A GGC** **A GGC**

High Score: 30

Example 3

Gap cost: -2

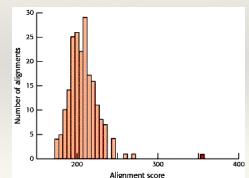
A	A	T	G	C
10	8	-2	-2	-2
-2	10	8	18	8
-2	8	10	18	16
-2	8	8	10	28

Alignments:

AATGC AATGC AATGC
AG GC A GGC AGGC

High Score: 28

Statistical Significance of alignment: Shuffling


Sequence alignment of Hemoglobin α and Myoglobin:

Hemoglobin α	W E P A D K T N A C A M G K W P I A G E Y C R E D I V E D L S P T C K Y T H P E	Gap
Myoglobin	W E P A D K T N A C A M G K W P I P O H E R E D I V E D L S P T C K Y T H P E	
	Q C E R Q L N V N W K L V	
	L S H Q S A Q V P C K A D K T N A C A M G K W P I A G E Y C R E D I V E D L S P T C K Y T H P E	
	E M A K A D K T N A C A M G K W P I A G E Y C R E D I V E D L S P T C K Y T H P E	
	L S H Q S A Q V P C K A D K T N A C A M G K W P I A G E Y C R E D I V E D L S P T C K Y T H P E	
	I S E C Q P P A F P P A M S A D K F L A E T P W T L V T K Y S P F Q Q	

Score: 355

Shuffling a sequence:

THISISTHECORRECTSEQUENCE

Gap penalty

Most common model:

$$W_N = G_0 + N * G_1$$

W_N : gap penalty for a gap of size N

G_0 : cost of opening a gap

G_1 : cost of extending the gap by one

N : size of the gap

Global versus Local Alignment

Global alignment finds the arrangement that maximizes total score

Best known algorithm: *Needleman and Wunsch*.

Local alignment identifies highest scoring subsequences,

sometimes at the expense of the overall score.

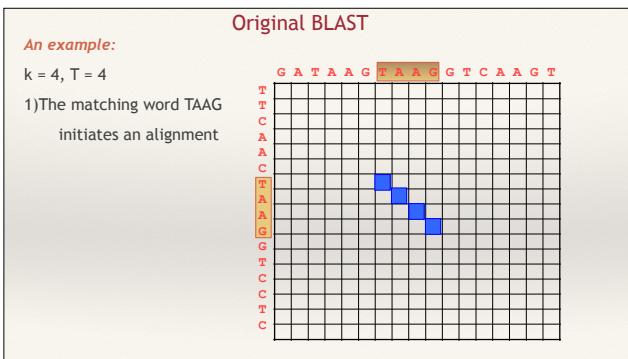
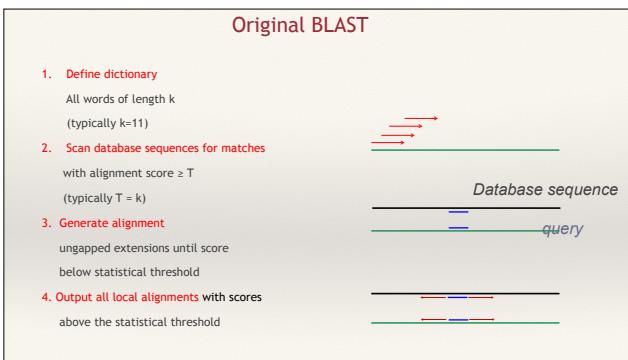
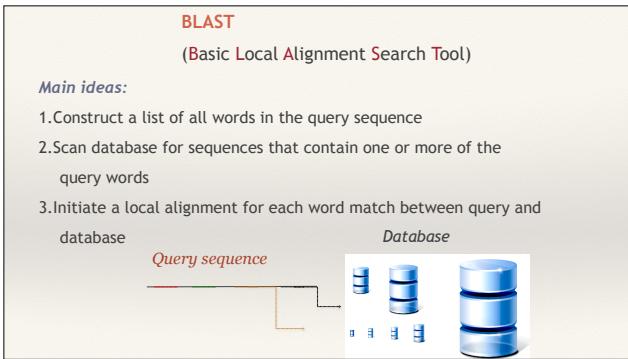
Best known algorithm: *Smith and Waterman*.

Local alignment algorithm is just a variation of the global alignment

algorithm!

Modifications for local alignment

- 1) The scoring matrix has negative values for mismatches
- 1) The minimum score for any (i,j) in the alignment matrix is 0.
- 1) The best score is found anywhere in the filled alignment matrix




These 3 modifications cause the algorithm to search for matching sub-sequences which are not penalized by other regions (modif. 2), with minimal poor matches (modif 1), which can occur anywhere (modif 3).

Global versus Local Alignment

Match: +1; Mismatch: -2; Gap: -1

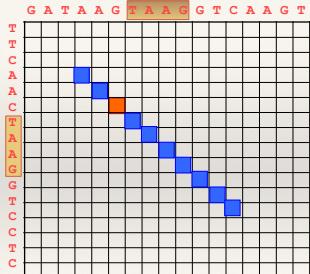
	A	C	C	T	G	S
A	1	-3	-3	-3	-3	-3
C	-3	2	1	-2	-2	-2
C	-3	1	3	-1	-1	-1
N	-3	-2	-1	1	0	0
S	-3	-2	-1	0	-1	1

Global: ACCTGS ACCTGS Local: ACC
 ACC-NS ACCN-S ACC

Original BLAST

An example:

$k = 4, T = 4$


1) The matching word AGGT

initiates an alignment

2) Extension of the alignment

to the left and right with
no gap until alignment

score falls below 50%

Original BLAST

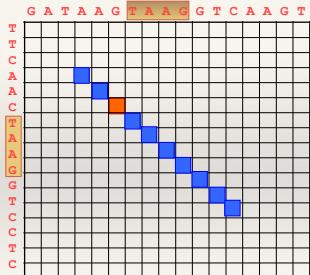
An example:

$k = 4, T = 4$

1) The matching word AGGT

initiates an alignment

2) Extension of the alignment


to the left and right with
no gap until alignment

score falls below 50%

3) Output:

AAGTAAGGTC

AACCTAAGGTC

Gapped BLAST

An example:

$k = 4, T = 4$

1) The matching word GGTC

initiates an alignment

2) Extend alignment in a band

around anchor

BLAST Portal

Home Recent Results Saved Strategies Help

NCBI BLAST Home

BLAST finds regions of similarity between biological sequences. [more...](#)

Learn more about how to use the new BLAST design

BLAST Assembled Genomes

Choose a genome to search, or list all generic BLAST databases.

Human: Oryza sativa: **Mouse:** **Rat:** **Danio rerio:** **Arabidopsis thaliana:** **Drosophila melanogaster:** **Alexa mellea:**

Basic BLAST

Choose a BLAST program to run.

nucleotide blast Search a nucleotide database using a nucleotide query. Algorithm: blast, megablast, descriptive megablast

protein blast Search protein database using a protein query. Algorithm: blastp, psi-blast, ph-blast

blast Search protein database using a translated nucleotide query

tblastn Search translated nucleotide databases using a protein query

tblastx Search translated nucleotide databases using a translated nucleotide query

BLAST: Input

NCBI BLAST! Help info: BLASTP programs search protein databases using a protein query. [more...](#) [Recent jobs](#) [Logout](#)

Enter Query Sequence [Clear](#) [Query subrange](#)

From: To:

Or, upload file [no file selected](#)

Job Title:

Enter a descriptive title for your BLAST search.

Choose Search Set

Database: Non-redundant protein sequences (nr) [Organism](#) [Genome](#)

Organism: Enter organism common name, binomial, or tax id. Only 20 top taxa will be shown.

Enter Query Identifier: Enter an entries query to limit search.

Program Selection

Algorithm: Multi protein-protein BLAST PSI-BLAST (Position-Specific Iterated BLAST) PH-BLAST (Pattern-Hit Iterated BLAST) Choose a BLAST algorithm

BLAST Search database nr using BLASTp (protein-protein BLAST) [View results in a new window](#)

► Algorithm parameters

BLAST Parameters

▼ Algorithm parameters

General Parameters

Max target sequences: Select the maximum number of aligned sequences to display

Short queries: Automatically adjust parameters for short input sequences

Expect threshold:

Word size:

Scoring Parameters

Matrix: BLOSUM62

Gap Costs: Existence: 11 Extension: 1

Compositional adjustments: Composition-based statistics

Filters and Masking

Filter: Low complexity regions

Mask: Mask for lookup table only Mask lower case letters

BLAST Results

Statistics of Protein Sequence Alignment

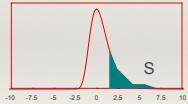
❖ *Statistics of global alignment:*

Unfortunately, not much is known! Statistics based on Monte Carlo simulations (shuffle one sequence and recompute alignment to get a distribution of scores)

❖ *Statistics of local alignment*

Well understood for ungapped alignment. Same theory probably apply to gapped-alignment

Statistics of Protein Sequence Alignment


What is a local alignment ?

"Pair of equal length segments, one from each sequence, whose scores can not be improved by extension or trimming. These are called high-scoring pairs, or HSP"

<http://www.people.virginia.edu/~wrv/cshl98/Altschul/Altschul-1.html>

The E-value for a sequence alignment

HSP scores follow an extreme value distribution, characterized by two parameters, K and λ .

The expected number of HSP with score at least S is given by:

$$E = Km n \exp(-\lambda S)$$

m, n : sequence lengths

E : E-value

Raw scores have little meaning without knowledge of the scoring scheme used for the alignment, or equivalently of the parameters K and λ .

Scores can be normalized according to:

$$S' = \frac{\lambda S - \ln(K)}{\ln(2)}$$

S' is the **bit score** of the alignment.

The E-value can be expressed as:

$$E = mn 2^{-S'}$$

The P-value of a sequence alignment

The number of random HSP with score greater of equal to S follows a Poisson distribution:

$$P(X \text{ random HSP with score} \geq S) = \exp(-E) \frac{E^X}{X!}$$

(E: E-value)

Then:

$$P(0 \text{ random HSP with score} \geq S) = \exp(-E)$$

$$P_{val} = P(\text{at least 1 random HSP with score} \geq S) = 1 - \exp(-E)$$

Note: when E << 1, P ≈ E

The database E-value for a sequence alignment

2) Longer sequences are more likely to be related to the query:

$$E_{DB} = N_S K m n \exp(-\lambda S)$$

BLAST reports E_{DB2}

$$E_{DB2} = K m N_R \exp(-\lambda S)$$

Why multiple sequence alignment?

Seq1: AALG**C**LVKDYFPEP--VTVS**W**NSG---

Seq2: VSLT**C**LVKGFYPSD--IAVE**W**WSNG--

Why multiple sequence alignment?

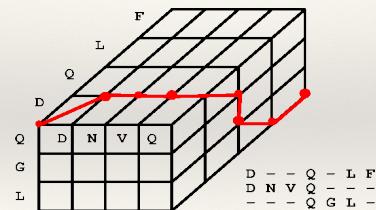
Seq1: AALG**C**LVKDYFPEP--VTVS**W**NSG---

Seq2: VSLT**C**LVKGFYPSD--IAVE**W**WSNG--

Seq3: VTIS**C**TGSSSNIGAG-NHV**W**Y**Q****Q****L****P****G**

Seq4: VTIS**C**TGSSNIGS--ITVN**W**Y**Q****Q****L****P****G**

Seq5: LRLSCSSSGFIFSS--YAMY**W**R**Q****A****P****G**


Seq6: LSLT**C**TVSGTSFDD--YYST**W**R**Q****P****P****G**

Seq7: PEVT**C**VVVVDVSHEDPQVKFN**W**YDG--

Seq8: ATL**C**LV**Q**ISDFYPGA--VTVA**W**KADS--

MSA: Dynamic programming?

Theoretically, it is possible to extend the dynamic programming technique to N sequences.

MSA: Dynamic programming?

- One of the most important properties of an algorithm is how its execution time increases as the problem is made larger. This is the **computational complexity** of the algorithm

- There is a notation to describe the algorithmic complexity, called the **big-O notation**. If we have a problem of size (i.e. number of input data points) n , then an algorithm takes **$O(n)$** time if the time increases linearly with n .

- It is important to realize that an algorithm that is **quick on small problems may be totally useless on large problems** if it has a bad $O()$ behavior.

MSA: Dynamic programming?

Standard description of algorithms, where n is the size of the problem, and c is a constant:

Complexity	Type	Computing time for $n=1000$ (1 operation=1s)
$O(c)$	Dream...	Seconds
$O(\log(n))$	Really good	10 seconds
$O(n)$	good	1000 seconds = 5 mins
$O(n^2)$	Not so good	10^6 seconds = 11.5 days
$O(n^3)$	Bad	10^9 seconds = 31 years
$O(c^n)$	Catastrophic!	Millions of years!!

MSA: Dynamic programming?

Computational complexity of dynamic programming:

-Two sequences of length M : **$O(M^2)$**

-Three sequences of length M: **$O(M^3)$**

- N sequences of length M: **$O(M^N)$**

-> dynamic programming is not a reasonable option for aligning multiple sequences!

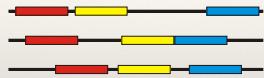
MSA: Approximate methods

1. Progressive global alignment

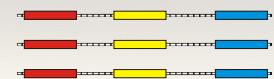
Start with the most similar sequences and builds the alignment by adding the rest of the sequences

2. Iterative methods

Start by making alignments of small group of sequences and then revise the alignment for better results


3. Alignment based on small conserved domains

4. Alignment based on statistical or probabilistic models of the sequence


Multiple sequence alignment:

using conserved domains

Sequences often contain highly conserved regions

These regions can be used for an initial alignment

How to generate a multiple sequence alignment?

Raw Alignment

Human	N Y L S
Chimp	N K Y L S
Gorilla	N F S
Orangutan	N F L S

How to generate a multiple sequence alignment?

Sequence elements are not truly independent but related by phylogeny:

Raw Alignment

Human	N Y L S
Chimp	N K Y L S
Gorilla	N F S
Orangutan	N F L S

How to generate a multiple sequence alignment?

Sequence elements are not truly independent but related by phylogeny:

Raw Alignment

Human	N Y L S
Chimp	N K Y L S
Gorilla	N F S
Orangutan	N F L S

How to generate a multiple sequence alignment?

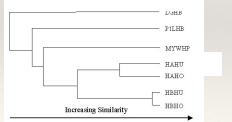
Sequence elements are not truly independent but related by phylogeny:

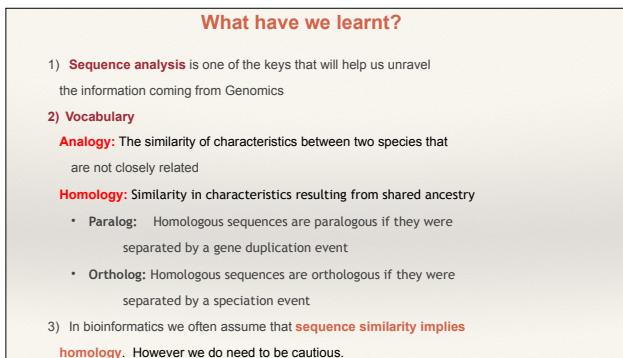
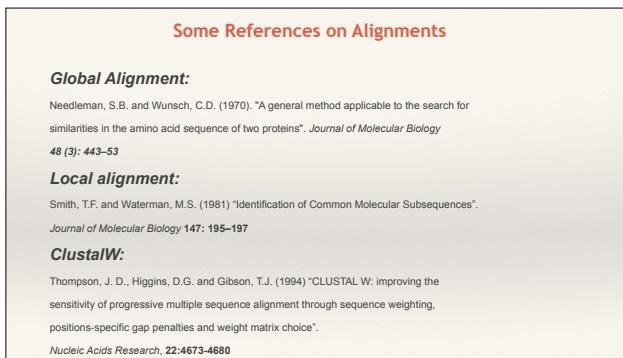
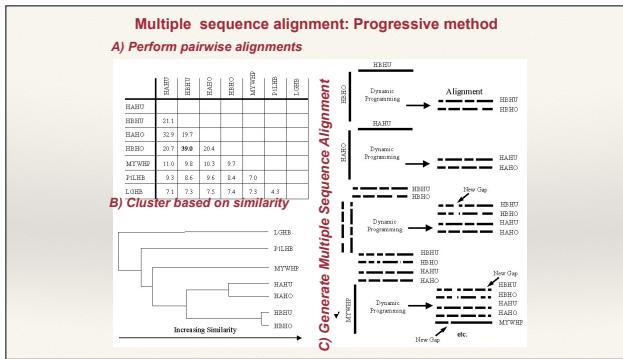
Raw Alignment

Human	NYLS	NYLS	NYLS	NKYLS	NFS	NFLS
Chimp	NKYLS	Human	Chimp	Gorilla	Orangutan	
Gorilla	NFS					
Orangutan	NFLS					
		N-YLS	NKYLS	NFS	NFLS	
		NKYLS				
		N-F-S				
		N-FLS				

Multiple sequence alignment: Progressive method

A) Perform pairwise alignments


	SAHBP	SHBEP	SABSO	SHBEP	SAFSD	SHBEP	SHBEP
SAHBP							
SHBEP	21.1						
SABSO	32.9	19.7					
SHBEP	20.7	39.8	20.4				
SAFSD	11.0	9.8	10.3	9.7			
SHBEP	9.3	8.6	9.6	8.4	7.0		
SHBEP	7.1	7.3	7.5	7.4	7.3	4.3	




Multiple sequence alignment: Progressive method

A) Perform pairwise alignments

	SAHBP	SHBEP	SABSO	SHBEP	SAFSD	SHBEP	SHBEP
SAHBP							
SHBEP	21.1						
SABSO	32.9	19.7					
SHBEP	20.7	39.8	20.4				
SAFSD	11.0	9.8	10.3	9.7			
SHBEP	9.3	8.6	9.6	8.4	7.0		
SHBEP	7.1	7.3	7.5	7.4	7.3	4.3	

B) Cluster based on similarity

What have we learnt?

4) Sequence analysis starts with **an analysis of its content**

1) DNAs:

Chargaff rule2: the composition of DNA varies from one species to another

2) Proteins:

Tri-peptide content identifies the kingdom of life
(bacteria, archea or eukaryot)

- 5) **DotPlots** are very useful, qualitative tools for sequence comparison
- 4) **Scoring** between sequences is usually based on **substitution matrices**

Most common matrices: **PAM** and **BLOSUM**

What have we learnt?

1. **Dynamic programming (DP)** is an algorithm for aligning two sequences that is guaranteed to generate the **optimal alignment**, under the hypothesis that the **scores are additive**.
2. There are two variants of DP used for sequence analysis
 - Global alignment:** Needleman and Wunsch
 - Local alignment:** Smith and Waterman
3. DP is too slow for comparing a sequence with a large database
4. **BLAST** provides a heuristic method for detecting sequences that are similar
5. **BLAST** is **best for detection** and should not be trusted for the alignment itself

What have we learnt?

6) Multiple sequence alignment: definition

A multiple sequence alignment is an alignment of $n > 2$ sequences obtained by inserting gaps (" - ") into sequences such that the resulting sequences have all length L . MSW can help to reveal biological facts about proteins, to establish homology....

7) Difficulties in generating MSA

Most pairwise alignment algorithms are too complex to be used for N-wise alignments

8) Three main types of MSA algorithms:

- Progressive global alignment (starts with the most alike sequences)
 - * e.g., ClustalW, ClustalX
- Iterative methods (initial alignment of groups of sequences that are revised)
 - * MultAlin, PRPP, SAGA
- Alignments based on locally conserved patterns