
Protein Structure Prediction

CPK: hard sphere model Ball-and-stick Cartoon

Protein Structure Representation

Degrees of Freedom in Proteins
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Backbone: 3 angles per residue : ϕ, φ and ω 

Sidechain: 1 to 7 angles, χ; each χ has 3 favored values: 60o, -60o, 180o.

Protein Structure Representation

Ramachandran Plots
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Root Mean Square Distance (RMSD)
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To compare two sets of points (atoms) A={a1, a2, …aN} and B={b1, b2, …,bN}: 

-Define a 1-to-1 correspondence between A and B 

 for example, ai corresponds to bi, for all i in [1,N] 

-Compute RMS as: 
 

d(Ai,Bi) is the Euclidian distance between ai and bi.
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Old problem, solved in Statistics, 
Robotics, Medical Image Analysis, 

…

●Simplified problem: we know 
the correspondence between 
set A and set B 

●We wish to compute the rigid 
transformation T that best 
align a1 with b1, a2 with b2, …, 
aN with bN 

●The error to minimize is 
defined as: 

  

Root Mean Square Distance (RMSD)
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Proteins: Finding the Primary Structure

Methods for finding the sequence of a protein: 

-Translating gene sequence 
- For proteins from prokaryotes, direct translation 
- For proteins from eukaryotes, we need the sequence of  
  mRNA or cDNA 

-Edman degradation  
limited to “small” proteins, up to 50 amino acids 
for automated sequencer 

-Mass spectrometry

(http://en.wikibooks.org/wiki/Structural_Biochemistry/Proteins/Protein_sequence_determination_techniques)

Proteins: Finding the Primary Structure

(Phenyl isothiocyanate or PITC)

(Trifluoroacetic  acid, TFA)

Proteins: Finding the Tertiary Structure

Methods for finding the 3D structure of a protein: 

- Circular Dichroism  
(low resolution; provides information on secondary structure) 

-X-ray crystallography  
 (high resolution; finds structure of a protein in a crystal) 

- NMR spectroscopy  
 (high resolution; finds structure of a protein in solution)



Proteins: Circular Dichroism

Circular dichroism (CD) spectroscopy  
measures differences in the absorption 
 of left-handed polarized light versus  
right-handed polarized light which 
 arise due to structural asymmetry. 

Different secondary structures in  
proteins have different CD spectra  
as they have  different asymmetry. 
CD therefore can detect secondary 
structures in protein

Proteins: X-ray Crystallography

Bragg’s Law:
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From the “pattern of 
diffraction”, i.e. the maximum 
of intensities observed, we 
can find the angles of 
diffraction and for each 
angle we get the corresponding d 
using Bragg’s law

General principle of X-ray 
crystallography applied to 
proteins: 

1) We need a crystal 

2) From the diffraction pattern, 
     we get the crystal organization 

3) From the diffraction intensities, 
 we get the electron densities 

4) Once the electron density map 
 we fit a structure that matches 
 with this density 

5) From the atomic model, we 
 can compute a theoretical 
 diffraction map; if it matches 
 with the experimental one,  
 we are done; otherwise refine



Getting the Diffraction Pattern

Rosalyn Franklin:  
Diffraction pattern for DNA

3D Fourier Transform

From Diffraction to Electron Density Map

One hidden problem: diffraction patterns provide intensities; for 
Fourier transform, need intensity and phase. A significant step in 
X-ray crystallography is the solve the “phase problem”.

2.6 Å resolution 1.2 Å resolution

Fitting the structure:  
Influence of the resolution



Resolution (Å)  Meaning 

>4.0    Individual coordinates meaningless 
3.0 - 4.0   Fold possibly correct, but errors are very likely.  
2.5 - 3.0   Fold likely correct except that some surface loops   
                  might be mismodelled.  
2.0 - 2.5   Many small errors can normally be detected.    
          Fold normally correct and number of errors in    
                  surface loops is small.  
    Water molecules and small ligands become visible. 
1.5 - 2.0   Many small errors can normally be detected.  
    Folds are extremely rarely incorrect, even in surface  
         loops. 
0.5 - 1.5   In general, structures have almost no errors at this  
         resolution. geometry studies are made from these   
             structures.

Resolution of X-ray structures

(http://en.wikipedia.org/wiki/Resolution_(electron_density)

Large molecular assemblies:  
X-ray crystallography and Cryo-EM

(Norwalk virus: http://www.bcm.edu/molvir/norovirus)

X-ray structure

(180 copies of 
the same protein)

Large molecular assemblies:  
X-ray crystallography and Cryo-EM

Cryo-EM: 

-Microscopy technique; 
 as such, do not need crystal 
 (closer to physiological 
  conditions) 

-Not high-resolution enough 
  to provide atomic details; 
  used in combination with 
  modeling
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Why we need Homology Modeling?

❖ Aim to solve the structure of all proteins: this is too much work experimentally!

❖ Solve enough structures so that the remaining structures can be inferred from 
those experimental structures

❖ The number of experimental structures needed depend on our abilities to 
generate a model.

Sequence Space Structure Space



Proteins 
with 

known 
structures

Unknown proteins

Why we need Homology Modeling?

Russell et al.  (1997) J Mol Biol 269: 423-439

Why does Homology Modeling Work?

High sequence  
identity

High structure 
 similarity

Homology 
Modeling: 

How it 
works



Homology Modeling: How it works

▪ Find template 

▪ Align target sequence  
 with template 

▪ Generate model: 
  - add loops 

  - add sidechains 

▪ Refine model

Homology Modeling: Input

The query, also called target sequence 

The template structure and sequence 
 (need high quality structure) 

The sequence alignment between query and template sequence 
 (Probably the most important input!)

Wallner B, Elofsson A. 
All are not equal: a benchmark of different homology modeling programs. 
Protein Sci.   2005   14(5):1315-27. 

Homology Modeling: Which program to use?



http://swissmodel.expasy.org/

Homology Modeling: Which program to use?

1) Web service: SwissModel

3 modes: 
 - fully automatic 
 - “Alignment mode”: you provide your own target-template 
        alignment 
 - “Project mode”: provides an environment to edit alignment

2) Software: Modeller 
 http://www.salilab.org/modeller/  

Probably the best maintained software the homology modeling

– Swiss-Model repository  
(http://swissmodel.expasy.org/repository/) 

• Companion to the Swiss-Model tools – over 2.0 million 
models of protein domains 

– ModBase 
 (http://modbase.compbio.ucsf.edu/) 

• Companion to Modeller  

Do not start a homology modeling project  
before checking… 

Structural Bioinformatics: Proteins
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❖ Given a protein sequence a1a2…aN, secondary structure prediction aims at 
defining the state of each amino acid ai as being either H (helix), E 
(extended=strand), or O (other) (Some methods have 4 states: H, E, T for turns, 
and O for other). 

❖ The quality of secondary structure prediction is measured with a “3-state 
accuracy” score, or Q3. Q3 is the percent of residues that match “reality” (X-ray 
structure).

Secondary Structure Prediction

Secondary Structure Assignment

Determine Secondary Structure positions in known protein  
structures using DSSP or STRIDE: 

1. Kabsch and Sander. Dictionary of Secondary Structure  in Proteins: pattern  
      recognition of hydrogen-bonded and  geometrical features.  
 Biopolymer 22: 2571-2637 (1983)  (DSSP) 

2. Frischman and Argos. Knowledge-based secondary structure assignments.  
 Proteins, 23:566-571 (1995)  (STRIDE)

❖ Chou and Fasman 

  (Chou and Fasman. Prediction of protein conformation.  Biochemistry, 13: 211-245, 1974) 

❖ GOR 

  (Garnier, Osguthorpe and Robson. Analysis of the accuracy  and implications of simple 
methods for predicting the  secondary structure of globular proteins. J. Mol. Biol., 120:97- 120, 
1978)

Early methods for Secondary Structure Prediction
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❖ Start by computing amino acids propensities to belong to a given type of 
secondary structure:

Chou and Fasman

Propensities > 1 mean that the residue type I is likely to be found in the 
Corresponding secondary structure type.

Amino Acid α-Helix  β-Sheet  Turn 
     Ala     1.29    0.90  0.78 
     Cys                1.11    0.74  0.80 
     Leu     1.30    1.02  0.59 
     Met     1.47    0.97  0.39 
     Glu     1.44    0.75  1.00 
     Gln     1.27    0.80  0.97 
     His     1.22    1.08  0.69 
     Lys     1.23    0.77  0.96 
     Val     0.91    1.49  0.47 

      Ile     0.97    1.45  0.51 
      Phe     1.07    1.32  0.58 
      Tyr     0.72    1.25  1.05 
      Trp     0.99    1.14  0.75 
      Thr     0.82    1.21  1.03 
      Gly     0.56    0.92  1.64 

      Ser     0.82    0.95  1.33 
      Asp     1.04    0.72  1.41 
      Asn     0.90    0.76  1.23 
      Pro     0.52    0.64  1.91 

           Arg                          0.96         0.99       0.88   

Chou and Fasman

Favors 
α-Helix

Favors 
β-strand

Favors 
turn

Chou and Fasman

Predicting helices: 
 - find nucleation site: 4 out of 6 contiguous residues with P(α)>1 
 - extension: extend helix in both directions until a set of 4 contiguous 
   residues has an average P(α) < 1 (breaker) 
 - if average P(α) over whole region is >1, it is predicted to be helical

Predicting strands: 
 - find nucleation site: 3 out of 5 contiguous residues with P(β)>1 
 - extension: extend strand in both directions until a set of 4 contiguous 
   residues has an average P(β) < 1 (breaker) 
 - if average P(β) over whole region is >1, it is predicted to be a strand



Chou and Fasman

Position-specific parameters 
for turn: 
Each position has distinct 
amino acid preferences. 

Examples: 

-At position 2, Pro is highly 
 preferred; Trp is disfavored 

-At position 3, Asp, Asn and Gly 
 are preferred 

-At position 4, Trp, Gly and Cys 
  preferred

f(i)        f(i+1)   f(i+2)   f(i+3)

Chou and Fasman

Predicting turns: 
 - for each tetrapeptide starting at residue i, compute: 
  - PTurn (average propensity over all 4 residues) 
  - F = f(i)*f(i+1)*f(i+2)*f(i+3) 

 - if PTurn > Pα and PTurn > Pβ and PTurn > 1 and F>0.000075 
   tetrapeptide is considered a turn.

Chou and Fasman prediction: 

 http://fasta.bioch.virginia.edu/fasta_www/chofas.htm

The most successful methods for predicting secondary structure 
 are based on neural networks.  The overall idea is that neural  
 networks can be trained to recognize amino acid patterns in  
 known secondary structure units, and to use these patterns to  
 distinguish between the different types of secondary structure. 

Neural networks classify “input vectors” or “examples” into  
categories (2 or more). 
They are loosely based on biological neurons.

Neural Networks



The perceptron
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The perceptron classifies the input vector X into two categories. 

If the weights and threshold T are not known in advance, the perceptron 
must be trained.  Ideally, the perceptron must be trained to return the correct 
answer on all training examples, and perform well on examples it has never seen. 

The training set must contain both type of data (i.e. with “1” and “0” output).

The perceptron
Notes: 

 - The input is a vector X and the weights can be stored in another 
    vector W. 

 - the perceptron computes the dot product S = X.W 

 - the output F is a function of S: it is often set discrete (i.e. 1 or 
 0), in which case the function is the step function. 
 For continuous output, often use a sigmoid: 
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- Not all perceptrons can be trained ! (famous example: XOR)

The perceptron

Training a perceptron: 

Find the weights W that minimizes the error function: 
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P: number of training data 
Xi: training vectors 
F(W.Xi): output of the perceptron 
t(Xi) : target value for Xi

Use steepest descent: 

 - compute gradient:  

 - update weight vector: 

 - iterate

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

∂
∂

∂
∂

∂
∂

∂
∂

=∇
Nw
E

w
E

w
E

w
EE ,...,,,

321

EWW oldnew ∇−= ε
(e: learning rate)



Neural Network

A complete neural network 
 is a set of perceptrons 
 interconnected such that 
 the outputs of some units 
 becomes the inputs of other 
 units.  Many topologies are 
 possible!

Neural networks are trained just like perceptron, by minimizing an error function: 
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PHD: Secondary structure prediction using NN

13x20=260 values

PHD: Input
For each residue, consider 
a window of size 13:



PHD: Network 1 
Sequence     Structure

13x20 values 3 values

Pα(i)  Pβ(i) Pc(i)

Network1

PHD: Network 2 
Structure     Structure

3 values

Pα(i)  Pβ(i) Pc(i)

3 values

Pα(i)  Pβ(i) Pc(i)

17x3=51 values

For each residue, consider 
a window of size 17:

Network2

One popular model for protein folding assumes a sequence of events: 

❖ Hydrophobic collapse 

❖ Local interactions stabilize secondary structures 

❖ Secondary structures interact to form motifs 

❖ Motifs aggregate to form tertiary structure

Protein Structure Prediction



A physics-based approach: 

❖  - find conformation of protein corresponding to a thermodynamics 
minimum (free energy minimum) 

❖  - cannot minimize internal energy alone! Needs to include solvent 

❖  - simulate folding…a very long process! 

❖  Folding time are in the ms to second time range; however, Folding 
simulations at best run 1 ns in one day…

Protein Structure Prediction

• Sequence-Structure network: for each amino acid aj, a window of 13 
residues aj-6…aj…aj+6 is considered. The corresponding rows of the 
sequence profile are fed into the neural network, and the output is 3 
probabilities for aj: P(aj,alpha), P(aj, beta) and P(aj,other) 

• Structure-Structure network: For each aj, PHD considers now a 
window of 17 residues; the probabilities P(ak,alpha), P(ak,beta) and 
P(ak,other) for k in [j-8,j+8] are fed into the second layer neural 
network, which again produces probabilities that residue aj is in each 
of the 3 possible conformations 

• Jury system: PHD has trained several neural networks with different 
training sets; all neural networks are applied to the test sequence, 
and results are averaged 

• Prediction: For each position, the secondary structure with the 
highest average score is output as the prediction

PHD: Secondary structure prediction using NN


