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Biomolecular Simulations

* Molecular Mechanics force fields
o Energy Minimization
* Molecular dynamics

o Monte Carlo methods




Biomolecular Simulations

* Molecular Mechanics force fields

The two major assumptions in molecular simulations

1. Born-Oppenheimer approximation
“the dynamics of electrons is so fast that they can be
considered to react instantaneously to the motion of
their nuclei”

2. Classical mechanics

“The nuclei are treated as point particles that follow
the classical laws of mechanics.”

What is an atom?

» Classical mechanics: a point particle
» Defined by its position (X,y,z) and its mass

» May carry an electric charge (positive or negative),
usually partial (less than an electron)




Atomic interactions
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Solvation Free Energy
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[Eisenberg and McLachlan, (1986) Nature, 319, 199-203]

Hydrophobic potential: Surface Area, or Volume?
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Sphere Representations in Biology
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Measuring a Union of Balils
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Measuring a Union of Balils

Algorithm for computing
Delaunay triangulation:

Input: N: number of points
Ci: position of point I

1)Randomize points

2)Fori=1:N
- Location: find tetrehedra
that contains Ci
- Addition: Divide t into 4
tetrahedra
- Correct: flip non local tetrahedra

Output: list of tetrahedra

Measuring a Union of Balils

Compute Voronoi diagram from

Delaaunay complex: dual

Measuring a Union of Balls

Restrict Voronoi diagram to
the Union of Balls:

Power diagram




Measuring a Union of Balls

Atom i:
Fraction in Voronoi cell:
o; and B;

Measuring a Union f Balls
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Applications to drug design

HIV protease (3MXE) Main cavity Actual position of K54
(inhibitor)

BINDING POCKETS IN 16S RIBOSOMAL RNA

Hygromycin B

PDB structure: 1HZN

hoxm POCKETS IN 16S RIBOSOMAL RNA

Probe Size
1.4A




Computing energy

Bonded interactions are local, and therefore their computation has a linear
computational complexity (O(N), where N is the number of atoms in the
molecule considered.

The direct computation of the non bonded interactions involve all pairs of
atoms and has a quadratic complexity (O(N2)).
This can be prohibitive for large molecules.
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or to scale some interactions (usually 1-4)
@ S(r): cutoff function.
Three types:

1) Truncation: 1 r<b
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0 r=b

Cutoff schemes for faster energy computation
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Units in Molecular Simulations

Most force fields use the AKMA (Angstrom - Kcal — Mol — Atomic Mass Unit)
unit

system.
Quantity AKMA unit Equivalent SI
Energy 1 Kcal/Mol 4184 Joules
Length 1 Angstrom 10-10 meter
1 amu 27
Mass (H=1amu) 1.6605655 10-27 Kg
Charge le 1.6021892 10-19 C
Time 1 unit 4.88882 10714
second
Frequency 1cm-1 18.836 1010 rd/s

Some Common force fields in Computational
Biology

ENCAD (Michael Levitt, Stanford)

AMBER (Peter Kollman, UCSF; David Case, Scripps)
CHARMM (Martin Karplus, Harvard)

OPLS (Bill Jorgensen, Yale)

MM2/MM3/MM4 (Norman Allinger, U. Georgia)
ECEPP (Harold Scheraga, Cornell)

GROMOS (Van Gunsteren, ETH, Zurich)

[ Michael Levitt. The birth of computational structural biology. Nature Structural Biology, 8, 3%2
(2001)

Biomolecular Simulations

* Energy Minimization




Computing energy
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U is a function of the conformation C of the protein.
The probl of "minimizing U” can be stated as finding C
such that U(C) is minimum.

The minimizers

Minimization of a multi-variable function is usually an iterative
process, in which

updates of the state variable x are computed using the gradient,
and in some

(favorable) cases the Hessian.

Iterations are stopped either when the maximum number of steps
(user’s input)
is reached, or when the gradient norm is below a given threshold.

Steepest descent (SD):

The simplest iteration scheme consists of following the “steepest
descent” direction:

(o sets the minimum

= - along the line defined
[Xk"l Xk an(Xk)] by the gradient)

Usually, SD methods leads to improvement quickly, but then exhibit
slow progress toward a solution.

They are commonly recommended for initial minimization iterations,
when the starting function and gradient-norm values are very large.




The minimizers

Conjugate gradients (CG):

In each step of conjugate gradient methods, a search vector p, is
defined by a recursive formula:

{ Pen = _Vf(xk)+ Bt P ]

The corresponding new position is found by line minimization along p,:

Xeo = X + My Py

the CG methods differ in their definition of .

The minimizers
Newton’s methods:

Newton’s method is a popular iterative method for finding the 0 of a
one-dimensional function:

X3 Xz X1 Xo
It can be adapted to the minimization of a one —dimensional function, in

which S
case the iteration formula is: X, g\Xx
+1
g'(x)

Several implementations of Newton’s method exist: quasi-Newton,
truncated Newton, “adopted-basis Newton-Raphson” (ABNR),...

Biomolecular Simulations

* Molecular dynamics




What is a molecular dynamics simulation?

e Simulation that shows how the atoms in the system
move with time

e Typically on the nanosecond timescale

e Atoms are treated like hard balls, and their motions are
described by Newton’s laws.

Characteristic protein motions

Type of

- Timescale Amplitude
motion

Local:

Medium scale

bond stretching 0.01 ps AVVAV
<1R

angle bending 0.1 ps
methyl rotation 1ps
Periodic (harmonic)

loop motions

SSE formation ns - us 1-5 &
Global N/ 2
proteEn tltjmbllng 20 ns sk
water .
tumbling) (20 ps) Random (stochastic)
ms - hrs

protein folding

Why MD simulations?

e Link physics, chemistry and biology
e Model phenomena that cannot be observed experimentally
e Understand protein folding...

e Access to thermodynamics quantities (free energies, binding
energies,...)




How do we run a MD simulation?

o Get the initial configuration
From x-ray crystallography or NMR spectroscopy (PDB)
@ Assign initial velocities

At thermal equilibrium, the expected value of the kinetic energy
of the system at temperature T is:

13 1
<Ekin> =EZ ’an =E(3N)kBT

This can be obtained by assigning the velocity components vi from
a random Gaussian distribution with mean 0 and standard

deviation (kz7/m,): k.T
V)y=—8"
< ’> m

How do we run a MD simulation?

e For each time step:

. Compute the force on each atom: .
P X: cartesian vector

F(X) = —VE(X) _ _LE of the system
aX

. Solve Newton'’s 2nd law of motion for each atom,
to get new coordinates and velocities

M diagonal mass matrix

M 3( = F( X) .. means second order

differentiation with

. respect to time
* Store coordinates

Newton’s equation cannot be solved analytically:
®Stop — Use stepwise numerical integration

MD as a tool for minimization

Molecular dynamics

uses thermal energy

to explore the energy
rface

Energy mini
stops at local




Crossing energy barriers

State B ------

Energy
Position

- State A

B

Position time

The actual transition time from A to B is very quick (a few pico seconds).

What takes time is waiting. The average waiting time for going from A to B
can be expressed as: AG

_ (kT
Top=C

Biomolecular Simulations

* Monte Carlo methods

Monte Carlo: random sampling

A simple example:
Evaluate numerically the one-dimensional integral:

/= f F(X)

Instead of using classical quadrature, the integral can be rewritten as

I =(b-a) f(x)

<f(x)> denotes the unweighted average of f(x) over [a,b], and can be
determined by evaluating f(x) at a large number of x values randomly
distributed over [a,b]

Monte Carlo method!




A famous example: Buffon’s needle problem

ﬁ;— The probability that a needle of length
D I L overlaps with one of the lines, distant
ﬁ_ from each other by D, with L<D is:

p_2L

=) nD
ForL =D 2
P==
19

Method to estimate = numerically:
“Throw” N needles on the floor, find needles that cross one of the line
(say C of them). An estimate of n is:

w=2—
c

Sciences in Paris. Histoire de I'Acad. Roy. des Sci., pp. 43-45, 1733.
Buffon, G. "Essai d'arithmétique morale.” Histoire naturelle, générale er particuliére, Supplément 4,

[nufron, G. Editor's note concerning a lecture given by Mr. Le Clerc de Buffon to the Royal Academy of ]
46-123, 1777

Monte Carlo Sampling for protein structure

The probability of finding a protein (biomolecule) with a total energy
E(X) is:

> Partition function

Estimates of any average quantity of the form:
(A =fA(X)P(X)oD(

using uniform sampling would therefore be extremely inefficient.

Metropolis and coll. developed a method for directly sampling
according to the actual distribution.

Metropolis et al. Equation of state calculations by fast computing machines. J. Chem. Phys. ]
21:1087-1092 (1953)

Monte Carlo for sampling conformations

The Metropolis Monte Carlo algorithm:

1. Select a conformation X at random. Compute its energy E(X)
2. Generate a new trial conformation Y. Compute its energy E(Y)
3. Accept the move from X to Y with probability:
E(Y)-E (X
P= min(l,cxp(—M) Pick a random number
KT RN, uniform in [0,1].

If RN < P, accept the
4. Repeat 2 and 3. move.




