

Proteins		
Proteins: The Molecule of Life		
Proteins: Building Blocks	à	
Proteins: Secondary Structures		
Proteins: Tertiary and Quartenary Structure		
Proteins: Geometry		

1-letter	3-letter	Amino acid	1-letter	3-letter	Amino Acid			
А	Ala	Alanine	М	Met	Methionin			
С	Cys	Cysteine	Ν	Asn	Asparagine			
D	Asp	Aspartic Acid	Р	Pro	Proline			
Е	Glu	Glutamic Acid	Q	Gln	Glutamine			
F	Phe	Phenylalanine	R	Arg	Arginine			
G	Gly	Glycine	S	Ser	Serine			
Н	His	Histidine	Т	Thr	Threonin			
Ι	Ile	Isoleucine	V	Val	Valine			
K	Lys	Lysine	W	Trp	Tryptophan			
L	Leu	Leucine	Y	Tyr	Tyrosine			

%	
70	
.2	

Proteins: The Molecule of Life

Proteins: Building Blocks

Proteins: Secondary Structures

Proteins: Tertiary and Quartenary Structure

Proteins: Geometry

	All-Alpha topologies
	The lone helix Glucagon (hormone involved
	Glucagon (hormone involved Is regulating sugar metabolism) PDB code : IGCN
•	The helix-turn-helix motif
	ROP: RNA-binding Protein
	PDB code: IROP
	The 2 helices are twisted

All Beta Topology			
Beta sandwiches:			
	Fatty acid binding protein PDB code: 11FB		
	PDB code: 11FB		
UH			

The alpha/beta barrel
In a succession of alpha/beta motifs, if the first strand connects to the last, then the structure resembles a Barrel. PDB code : 1TIM

CPK: hard sphere model

Ball-and-stick

Cartoon

ור	

What have we learnt?						
All proteins are polymers built up from 20 amino acids.						
 All 20 amino acids have a similar structure: they all have a main- chain, consisting of an amino group and an acidic group, attached to a central carbon, named CA; the remaining atoms form the side- chain, that can be hydrophobic, polar or charged (acid or basic). 	<u>+</u> -					
 The conformation of the backbone of amino acids is restricted, except for glycine that does not have a sidechain. 						
 There are 3 main graphical representations of proteins: space- filling, wireframe and cartoon. 						

What have we learnt?

- There are 3 major types of secondary structures: $\alpha\text{-helices}, \, \beta\text{-sheets}$ and $\beta\text{-turns}.$
- Most helices are α-helices, stabilized through a network of CO (i) --- HN (i+4) hydrogen bonds
- There are two types of β-sheets: parallel and anti-parallel
- $\beta\text{-turns}$ correspond to 180 change in the backbone direction.

What have we learnt?

- There are three main classes of proteins: all Alpha, all Beta and Alpha + Beta. The latter can be divided in two, considering the alternating alpha/beta proteins as defining their own class.
- Bundles are common alpha-proteins
- Common beta folds include the greek key and the sandwiches. Immuno-globulins adopt a beta fold.
- The Rossman fold (alternating alpha/beta) is a common motif in proteins. It is found in the horseshoe, as well as in the TIM fold.