| Basic Principles of Protein |
| :---: | :---: |
| Structures |
| ECSI29 |
| PATRICE KOEHL |

Proteins

Proteins: The Molecule of Life

Proteins: Building Blocks

Proteins: Secondary Structures

Proteins: Tertiary and Quartenary Structure

Proteins: Geometry
Proteins
Proteins: The Molecule of Life
Proteins: Building Blocks
Proteins: Secondary Structures
Proteins: Tertiary and Quartenary
Structure

Protein Structure

Proteins
Proteins: The Molecule of Life

Proteins: Building Blocks

Proteins: Secondary Structures

Proteins: Tertiary and Quartenary
Structure

Proteins: Geometry

Review of Acid-Base Chemistry
What is an acid or a base?
An acid is a material that can release a proton (or hydrogen ion, H^{+}),
and a base is a material that can donate a hydroxide ion (OH^{-}) (Arhennius definition), or accept a proton (Lowry Bronsted definition)

It is important to notice that just because a compound has a hydrogen or an OH group does not mean that it can be an acid or a base!!
The hydrogen of methane (CH4) and usually of methyl groups (-CH3) are all strongly attached to the carbon atom
Glycerol has three OH groups $(\mathrm{CH} 2 \mathrm{OH}-\mathrm{CHOH}-\mathrm{CH} 2 \mathrm{OH})$ and all 3 are
alcoholic groups.

Review of Acid-Base Chemistry
pH is a measure of how acidic or alkaline (basic) a solution is. The pH of a solution is the negative log of the hydrogen ion concentration.

```
pH=-log(H+}
pOH=-log(\OH-}
pH+pOH=14
```

	$[\mathrm{H}+]$	pH	pOH	$[\mathrm{OH}]$
Strong base	$10-14$	14	0	1
Base	10^{-12}	12	2	10^{-2}
Weak base	$10-9$	9	5	10^{-5}
Neutral	10^{-7}	7	7	10^{-7}
Weak acid	10^{-4}	4	10	10^{-10}
Acid	$10-2$	2	12	$10-12$
Strong acid	1	0	14	10^{-14}

Review of Acid-Base Chemistry	
Dissociation of a weak acid: Equilibrium constant:	
$\mathrm{HA} \rightarrow \mathrm{A}^{-}+\mathrm{H}^{+}$	$\begin{aligned} & K_{A}=\frac{\left[H^{+}\right]\left[A^{-}\right]}{[H A]} \\ & p K_{A}=-\log \left(K_{A}\right) \end{aligned}$
Dissociation of a weak base:	
$\mathrm{BOH} \longrightarrow \mathrm{B}^{+}+\mathrm{OH}^{-}$	$K_{B}=\frac{\left[B^{+}\right]\left[\mathrm{OH}^{-}\right]}{[B O H]}$ $p K_{B}=-\log \left(K_{B}\right)$
For an (acid,base) pair:	$p K_{B}=14$

Amino Acid Chirality

D-form
L-form
(CORN rule)
Amino acids in proteins are in the L-form

| | | | | | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | | | | | | |

Amino Acids: Usage

Polar Amino acids: Cysteine
 $\xrightarrow{\begin{array}{l}\text { Can formm disulphide bridges } \\ \text { in proteins }\end{array}} \Longrightarrow{ }_{\mathrm{CB}}$

Charged Amino acids: Aspartic Acid

pKa sidechain: 3.9

Structural Bioinformatics: Proteins
Proteins: The Molecule of Life
Proteins: Building Blocks

Proteins: Secondary Structures

Proteins: Tertiary and Quartenary
Structure

Proteins: Geometry

The Protein: A polymer of Amino acids

	Helices
3_{10} helix	"Thin"; 3.0 residues /turn; $\sim 4 \%$ of all helices
π-helix (5_{16})	"Fat"; 4.2 residues /turn; instable
α-helix (4_{13}	"Right"; 3.6 residues /turn; $5.4 \AA$ /turn; most helices

Two types of β-sheets

Favorable /Unfavorable Residues In Turns

Turn	1	2	3	4
I	Asp, Asn, Ser, Cys	Pro	Pro	Gly
II	Asp, Asn, Ser, Cys	Pro	Gly, Asn	Gly

Structural Bioinformatics: Proteins
Proteins: The Molecule of Life
Proteins: Building Blocks

Proteins: Secondary Structures

Proteins: Tertiary and Quartenary
Structure

Proteins: Geometry

The Greek Key Topology
 T
 (II)

Folds including the Greek key topology include 4 to 13 strands.

The Horseshoe

PDB code: 2BNH

Structural Bioinformatics: Proteins Proteins: The Molecule of Life

Proteins: Building Blocks

Proteins: Secondary Structures

Proteins: Tertiary and Quartenary
Structure

Proteins: Geometry

- All proteins are polymers built up from 20 amino acids.
- All 20 amino acids have a similar structure: they all have a mainto a central carbon named CA; the remaining atoms form the side to a central carbon, named CA; the remaining atoms form the side
chain, that can be hydrophobic, polar or charged (acid or basic).
- The conformation of the backbone of amino acids is restricted,
except for glycine that does not have a sidechain.
- There are 3 main graphical representations of proteins: space-
filling, wireframe and cartoon.

What have we learnt?

- There are 3 major types of secondary structures: α-helices, β-sheets and β-turns.
- Most helices are α-helices, stabilized through a network of CO (i) --- HN (i+4) hydrogen bonds
- There are two types of β-sheets: parallel and anti-parallel
- β-turns correspond to 180 change in the backbone direction.

What have we learnt?

- There are three main classes of proteins: all Alpha, all Beta and Alpha + Beta. The latter can be divided in two, considering th
alternating alpha/beta proteins as defining their own class.
- Bundles are common alpha-proteins
- Common beta folds include the greek key and the sandwiches.
Immuno-globulins adopt a beta fold. Immuno-globulins adopt a beta fold.
- The Rossman fold (alternating alpha/beta) is a common motif in

