

Basic Principles of Protein Structures

◊ ECS129
◊ *Patrice Koehl*

Proteins

Proteins: The Molecule of Life

Proteins: Building Blocks

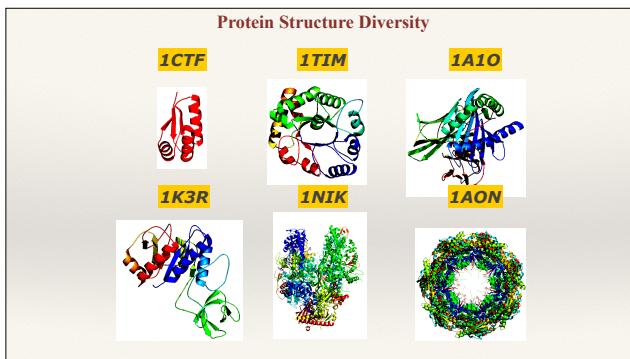
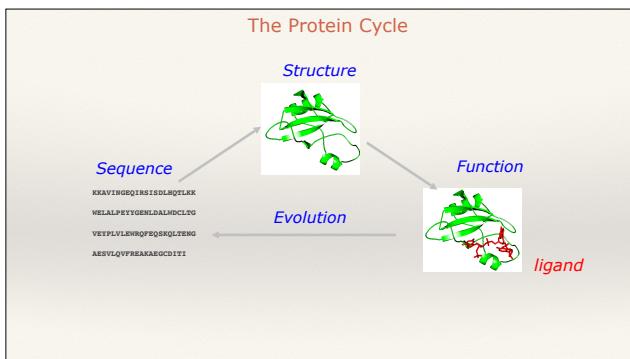
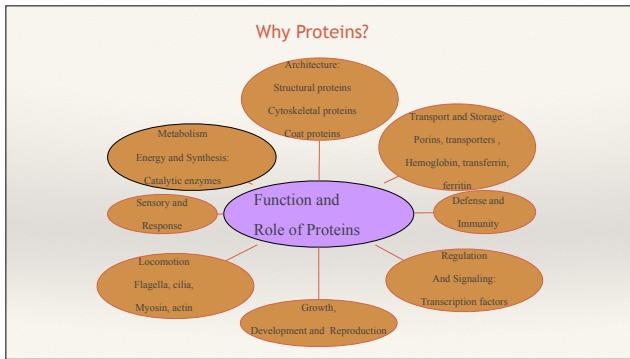
Proteins: Secondary Structures

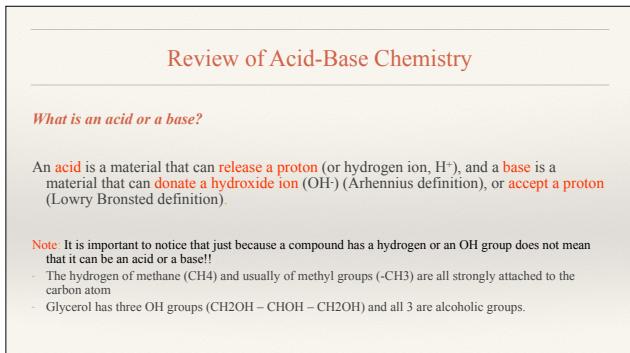
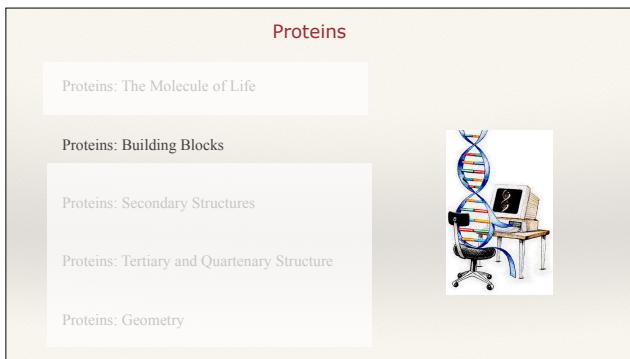
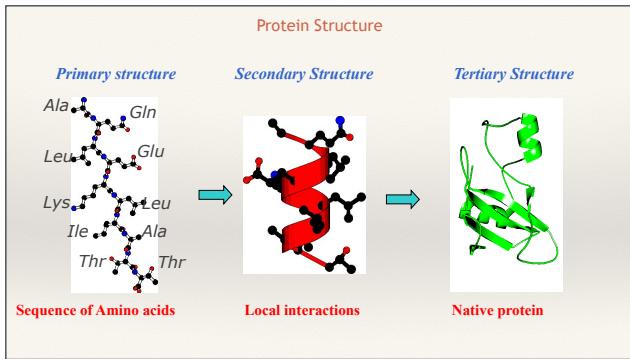
Proteins: Tertiary and Quaternary Structure

Proteins: Geometry

Proteins

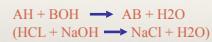
Proteins: The Molecule of Life




Proteins: Building Blocks




Proteins: Secondary Structures

Proteins: Tertiary and Quaternary Structure

Proteins: Geometry



Review of Acid-Base Chemistry

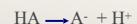

Acid plus base makes water plus a salt:

The chemical dissociation of nitric acid is:

Which can be rewritten as:

Review of Acid-Base Chemistry

pH is a measure of how acidic or alkaline (basic) a solution is. The pH of a solution is the negative log of the hydrogen ion concentration.


	[H ⁺]	pH	pOH	[OH ⁻]
Strong base	10 ⁻¹⁴	14	0	1
Base	10 ⁻¹²	12	2	10 ⁻²
Weak base	10 ⁻⁹	9	5	10 ⁻⁵
Neutral	10 ⁻⁷	7	7	10 ⁻⁷
Weak acid	10 ⁻⁴	4	10	10 ⁻¹⁰
Acid	10 ⁻²	2	12	10 ⁻¹²
Strong acid	1	0	14	10 ⁻¹⁴

$$\begin{aligned} \text{pH} &= -\log([H^+]) \\ \text{pOH} &= -\log([OH^-]) \\ \text{pH} + \text{pOH} &= 14 \end{aligned}$$

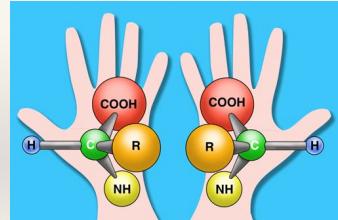
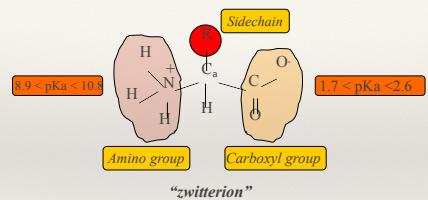
Review of Acid-Base Chemistry

Equilibrium constant:

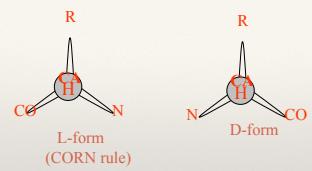
Dissociation of a weak acid:

$$\begin{aligned} K_A &= \frac{[H^+][A^-]}{[HA]} \\ pK_A &= -\log(K_A) \end{aligned}$$

Dissociation of a weak base:

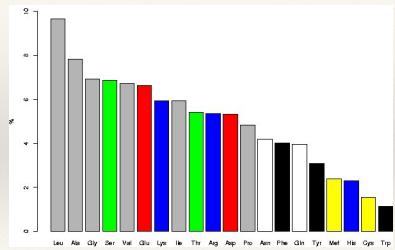
$$\begin{aligned} K_B &= \frac{[B^+][OH^-]}{[BOH]} \\ pK_B &= -\log(K_B) \end{aligned}$$


For an (acid,base) pair:

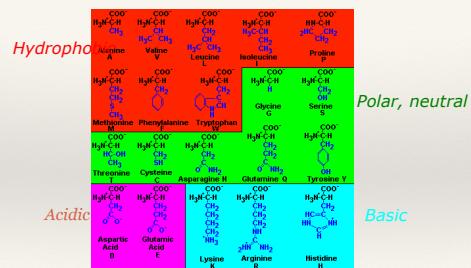
$$pK_A + pK_B = 14$$

The Basic Block: Amino Acid

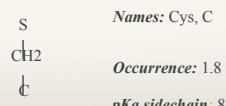
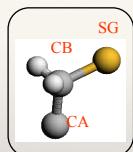
Amino Acid Chirality



Threonine and Isoleucine have a second optical center which is also identical in all natural amino acids.

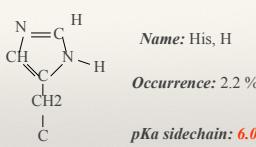

The 20 amino acids

1-letter	3-letter	Amino acid	1-letter	3-letter	Amino Acid
A	Ala	Alanine	M	Met	Methionine
C	Cys	Cysteine	N	Asn	Asparagine
D	Asp	Aspartic Acid	P	Pro	Proline
E	Glu	Glutamic Acid	Q	Gln	Glutamine
F	Phe	Phenylalanine	R	Arg	Arginine
G	Gly	Glycine	S	Ser	Serine
H	His	Histidine	T	Thr	Threonine
I	Ile	Isoleucine	V	Val	Valine
K	Lys	Lysine	W	Trp	Tryptophan
L	Leu	Leucine	Y	Tyr	Tyrosine



Amino Acids: Usage

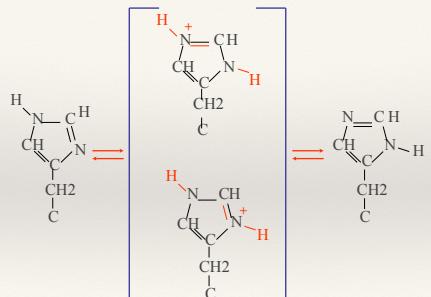
The 20 amino acids

Polar Amino acids: Cysteine

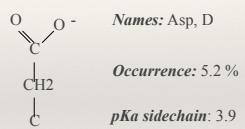
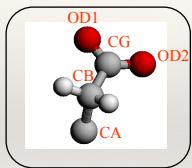

Names: Cys, C

Occurrence: 1.8 %
pKa sidechain: 8.3

Can form disulphide bridges
in proteins

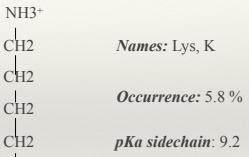
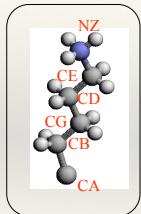


Polar Amino acids: Histidine

Name: His, H
Occurrence: 2.2 %
pKa sidechain: 6.04

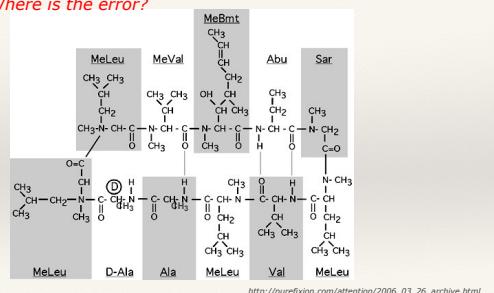
Different ionic states of Histidine



Charged Amino acids: Aspartic Acid

Occurrence: 5.2 %

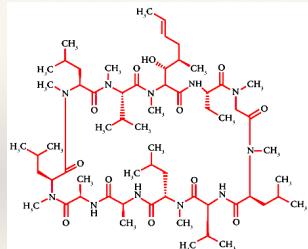
pKa sidechain: 3.9

Charged Amino acids: Lysine



Occurrence: 5.8 %

pKa sidechain: 9.2


Unusual Amino Acids: Cyclosporin

Where is the error?

Unusual Amino Acids: Cyclosporin

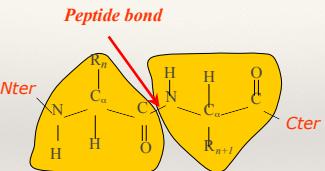
Correct!!

<http://www.cellsignal.com/products/9973.html>

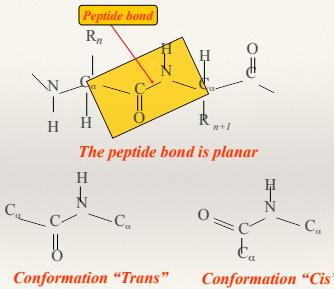
Proteins

Proteins: The Molecule of Life

Proteins: Building Blocks


Proteins: Secondary Structures

Proteins: Tertiary and Quartenary Structure

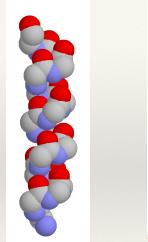

Proteins: Geometry

The Protein: A polymer of Amino acids

The Peptide Bond

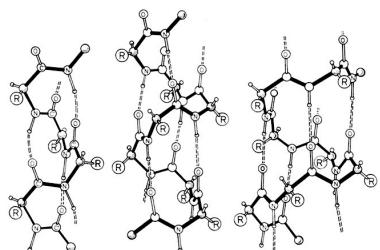
The peptide bond is planar

Conformation "Trans"


Conformation "Cis"

Helices

Cter



Nter

Hydrogen bonds: O (i) <-> N (i+4)

Helices

3₁₀ helix

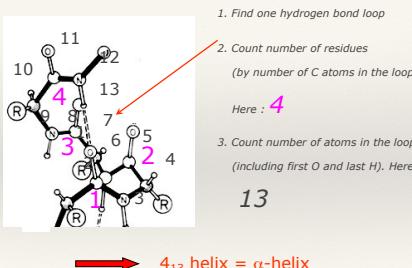
α -helix (4₁₃)

π -helix (5₁₆)

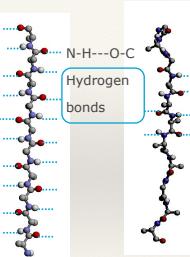
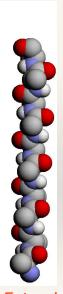
Helices

3_{10} helix

"Thin"; 3.0 residues /turn; ~ 4 % of all helices

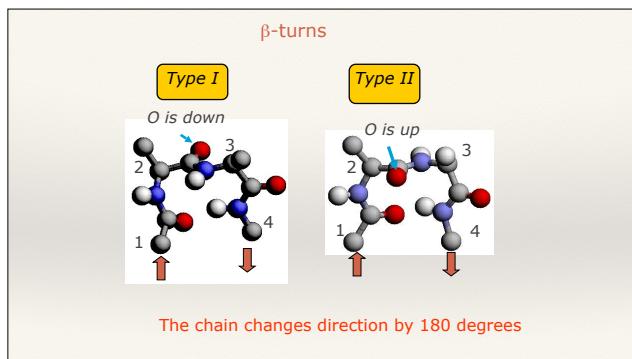
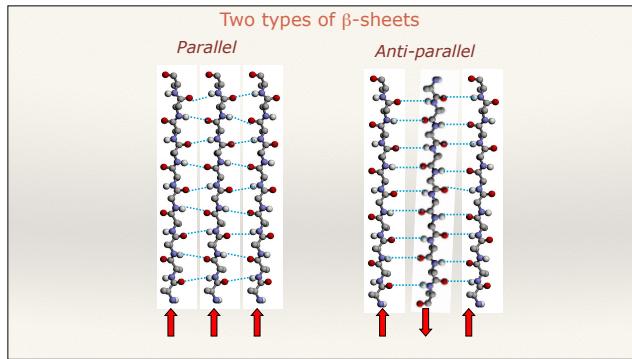

α -helix (5₁₆)

"Fat"; 4.2 residues /turn; instable



α -helix (4₁₃)

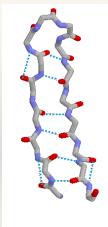
"Right"; 3.6 residues /turn; 5.4 Å /turn;
most helices

Identify Helix Type

The β -strand

Extended chain is flat


"Real β -strand is twisted"

Favorable /Unfavorable Residues In Turns

Turn	1	2	3	4
I	Asp, Asn, Ser, Cys	Pro	Pro	Gly
II	Asp, Asn, Ser, Cys	Pro	Gly, Asn	Gly

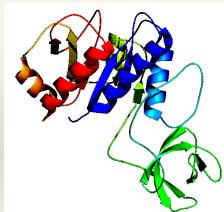
The β -hairpin

Proteins

Proteins: The Molecule of Life

Proteins: Building Blocks

Proteins: Secondary Structures


Proteins: Tertiary and Quartenary Structure

Proteins: Geometry

Protein Tertiary Structure

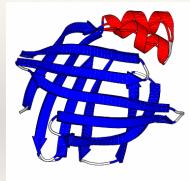
- ❖ All α proteins
- ❖ All β proteins
- ❖ Alpha and beta proteins:
 - α/β proteins (alternating α and β)
 - $\alpha + \beta$ proteins

All-Alpha topologies

❖ The lone helix

*Glucagon (hormone involved
Is regulating sugar metabolism)
PDB code : 1GCN*

❖ The helix-turn-helix

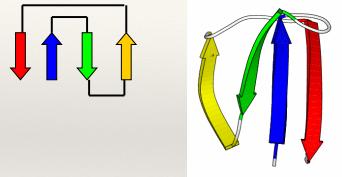


*ROP: RNA-binding Protein
PDB code: 1ROP*

*The 2 helices
are twisted*

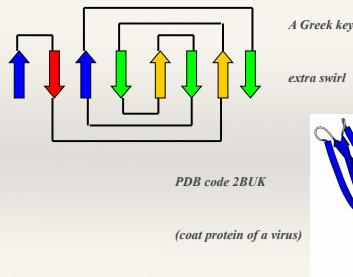
All Beta Topology

Beta sandwiches:

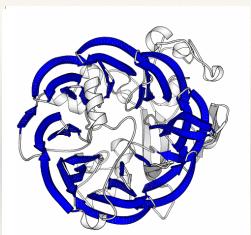

*Fatty acid binding protein
PDB code: 1IFB*

Closed Beta Barrel

PDB file: 2POR



The Greek Key Topology



Folds including the Greek key topology include 4 to 13 strands.

The Jellyroll Topology

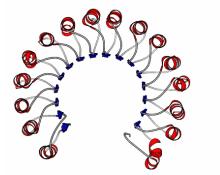
The Beta Propellor

Eight-plated propellor:

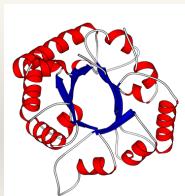
Each plate is a four-stranded
anti-parallel sheet

PDB code 4AAH

Alpha- Beta Topology


The Rossman fold:

Alternate beta / alpha motif

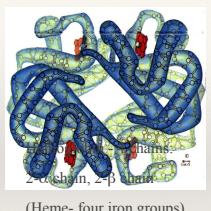

Always right handed

The Horseshoe

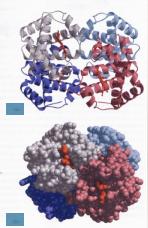
PDB code: 2BNH

The alpha/beta barrel motif, if the first strand

connects to the last,


then the structure resembles a

Barrel.

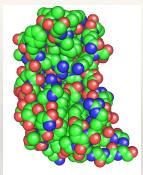

PDB code : 1TIM

Quaternary Structures

Assemblies of Protein Chains

(Heme- four iron groups)

Structural Bioinformatics: Proteins

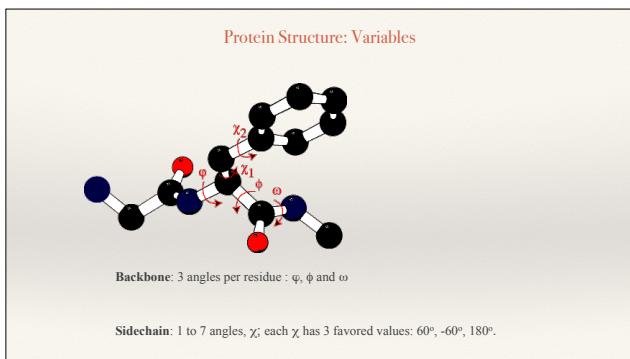
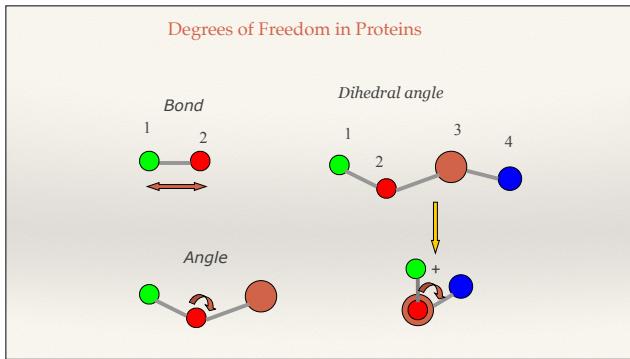

Proteins: Secondary Structures

Proteins: Tertiary and Quartenary

Structure

Proteins: Geometry

Protein Structure Representation



CPK: hard sphere model Ball-and-stick

Ball-and-stick

Cartoon

What have we learnt?

- ❖ All proteins are polymers built up from 20 amino acids.
- ❖ All 20 amino acids have a similar structure: they all have a main-chain, consisting of an amino group and an acidic group, attached to a central carbon, named CA; the remaining atoms form the side-chain, that can be **hydrophobic, polar or charged (acid or basic)**.
- ❖ The conformation of the backbone of amino acids is restricted, except for glycine that does not have a sidechain.
- ❖ There are 3 main graphical representations of proteins: space-filling, wireframe and cartoon.

What have we learnt?

- There are 3 major types of secondary structures: α -helices, β -sheets and β -turns.
- Most helices are α -helices, stabilized through a network of CO (i) --- HN (i+4) hydrogen bonds
- There are two types of β -sheets: parallel and anti-parallel
- β -turns correspond to 180 change in the backbone direction.

What have we learnt?

- ❖ There are three main classes of proteins: all Alpha, all Beta and Alpha + Beta. The latter can be divided in two, considering the alternating alpha/beta proteins as defining their own class.
- ❖ Bundles are common alpha-proteins
- ❖ Common beta folds include the greek key and the sandwiches. Immuno-globulins adopt a beta fold.
- ❖ The Rossmann fold (alternating alpha/beta) is a common motif in proteins. It is found in the horseshoe, as well as in the TIM fold.