Protein Structure Comparison	
ECS129	
Patrice Koehl	

Sequence versus Structure

• *The protein sequence is a string of letters*: there is an optimal solution (DP) to the problem of string matching, given a scoring scheme

• *The protein structure is a 3D shape*: the goal is to find algorithms similar to DP that finds the optimal match between two shapes.

Root Mean Square Distance (RMSD)	
To compare two sets of points (atoms) $A = \{a_1, a_2, \dots, a_N\}$ and $B = \{b_1, b_2, \dots, b_N\}$:	
-Define a 1-to-1 correspondence between A and B	
for example, a_i corresponds to b_i , for all i in [1,N]	
-Compute RMS as:	
$RMS(A, B) = \sqrt{\frac{1}{N} \sum_{i=1}^{N} d(a_i, b_i)^2}$	
$d(A_i, B_i)$ is the Euclidian distance between a_i and b_i .	

Protein Structur	re Superposition
 Simplified problem: we know the correspondence between set A and set B We wish to compute the rigid transformation T that 	Old problem, solved in Statistics, Robotics, Medical Image Analysis,
 best align a₁ with b₁, a₂ with b₂,, a_N with b_N The error to minimize is defined as: 	$\varepsilon = \min_{T} \sum_{i=1}^{N} \ T(a_i) - b_i\ ^2$

If both data sets A and B have been centered on 0, then t = 0!

at the origin of the framework

Step 1: Translate point sets A and B such that their centroids coincide

Protein Structure Alignment Protein Structure Superposition Problem:	
Given two sets of points $A=(a1, a2,, an)$ and $B=(b1, b2,bm)$ in 3D space, find the optimal subsets $A(P)$ and $B(Q)$ with $ A(P) = B(Q) $, and find the optimal rigid body transformation <i>Gopt</i> between the two subsets $A(P)$ and $B(Q)$ that minimizes a given distance metric D over all possible rigid body transformation G, i.e.	
$\min_{G} \{ D(A(P) - G(B(Q))) \}$ The two subsets $A(P)$ and $B(Q)$ define a "correspondence", and $p = A(P) = B(Q) $ is called the correspondence length.	

Two Subproblems	
1. Find correspondence set	
2. Find alignment transform (protein superposition problem)	
(p	

Existing Software

• DALI (Holm and Sander, 1993)

• SSAP (Orengo and Taylor, 1989)

• STRUCTAL (Levitt et al, 1993)

• VAST [Gibrat et al., 1996]

• LOCK [Singh and Brutlag, 1996]

• CE [Shindyalov and Bourne, 1998]

• SSM [Krissinel and Henrik, 2004]

• ...

	Trial-and-Error Approach to Protein Structure Alignment
Itera	te N times:
1.	Set Correspondence C to a seed correspondence set (small set sufficient to generate an alignment transform)
2.	Compute the alignment transform G for C and apply G to the second protein B
3.	Update C to include all pairs of features that are close apart
4.	If C has changed, then return to Step 2

Why Classifying ?	
Standard in biology: Aristotle: Plants and Animal	
Linnaeus: binomial system Darwin: systematic classification that reveals phylogeny	
• It is easier to think about a representative than to	
embrace the information of all individuals	

Protein Structure Classification	
 Domain Definition 3 Major classifications 	
- SCOP - CATH - DDD	

Protein Domain: Definitions

- 1) Regions that display significant levels of sequence similarity
- 2) The minimal part of a gene that is capable of performing a function
- 3) A region of a protein with an experimentally assigned function
- 4) Region of a protein structure that recurs in different contexts and proteins
- 5) A compact, spatially distinct region of a protein

Web services for domain identification	
Web access	
http://www.ncbs.res.in/~faculty/mini/ddbase/dial.html http://compbio.ornl.gov/structure/domainparser	
http://www.compbio.dundee.ac.uk/Software/Domak/domak.html http://123d.nciferf.gov/pdp.html	

Current state of the PDB

PDB Data Distributio	on by Experime	ental Method and	d Molecular Type		
Came (28)					
Copy Cov	1 Destates 17	Musicia Antida (*	Desisis 014 Complex 11	Othersit	Totallt
Experimental Method	Proteins[;	NUCINIC ACIDS	Protein/NA Complex	Other	Iotal.
A-may have	115135	1905	5672	10	122022
Flaction Microscony	1422	1234	241	0	1049
Other	204	4		13	227
Muti Method	193	3	2	1	109
Total	127490	3176	6624	32	137322

Classification of Protein Structure: SCOP	
(2) Folds: Major structural similarity Proteins are defined as having a common fold if they have the same major secondary structures in the same arrangement and	
with the same topological connections	
Proteins that have low sequence identities, but whose structural and functional features suggest that a common evolutionary origin is probable are placed together in superfamilies	
4) Family: Clear evolutionarily relationship Proteins clustered together into families are clearly evolutionarily related. Generally, this means that pairwise residue identities between the proteins are ally end explore.	
are ou // and greater	

Classification of Protein Structure: SCOP

Scop Classification Statistics

SCOP: Structural Classification of Proteins. 1.75 release 38221 PDB Entries (23 Feb 2009). 110800 Domains. 1 Literature Reference (excluding nucleic acids and theoretical models)

Class	Number of folds	Number of superfamilies	Number of families	
All alpha proteins	284	507	871	
All beta proteins	174	354	742	
Alpha and beta proteins (a/b)	147	244	803	
Alpha and beta proteins (a+b)	376	552	1055	
Multi-domain proteins	66	66	89	
Membrane and cell surface proteins	58	110	123	
Small proteins	90	129	219	
Total	1195	1962	3902	

ructure: CATH	
ed Alpha Beta	
Super Roll	
Other Barrel	

The DALI Domain Dictionary

- All-against-all comparison of PDB90 using DALI
- Define score of each pair as a Z-score
- Regroup proteins based on pair-wise score:
- Z-score > 2: "Folds"
- Z-score >4, 6, 8, 10 : sub-groups of "folds" (different from Families, and sub-families!)

Summary	
Classification is an important part of biology; protein structures are not exempt	
Prior to being classified, proteins are cut into domains	
 While all structural biologists agree that proteins are usually a collection of domains, there is no consensus on how to delineate the domains 	
There are three main protein structure classification: - SCOP (manual) source of evolutionary information	
- CATH (semi-automatic) source of geometric information - Dali (automatic) source of raw data	