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The Geometry of Biomolecular Solvation

HERBERT EDELSBRUNNER AND PATRICE KOEHL

Abstract. Years of research in biology have established that all cellular

functions are deeply connected to the shape and dynamics of their molec-

ular actors. As a response, structural molecular biology has emerged as

a new line of experimental research focused on revealing the structure of

biomolecules. The analysis of these structures has led to the development of

computational biology, whose aim is to predict from molecular simulation

properties inaccessible to experimental probes.

Here we focus on the representation of biomolecules used in these sim-

ulations, and in particular on the hard sphere models. We review how the

geometry of the union of such spheres is used to model their interactions

with their environment, and how it has been included in simulations of

molecular dynamics.

In parallel, we review our own developments in mathematics and com-

puter science on understanding the geometry of unions of balls, and their

applications in molecular simulation.

1. Introduction

The molecular basis of life rests on the activity of biological macro-molecules,

mostly nucleic acids and proteins. A perhaps surprising finding that crystallized

over the last handful of decades is that geometric reasoning plays a major role

in our attempt to understand these activities. In this paper, we address this

connection between biology and geometry, focusing on hard sphere models of

biomolecules.

The biomolecular revolution. Most living organisms are complex assemblies

of cells, the building blocks for life. Each cell can be seen as a small chemi-

cal factory, involving thousands of different players with a large range of size

and function. Among them, biological macro-molecules hold a special place.

These usually large molecules serve as storage for the genetic information (the
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nucleic acids such as DNA and RNA), and as key actors of cellular functions (the

proteins). Biochemistry, the field that studies these biomolecules, is currently

experiencing a major revolution. In hope of deciphering the rules that define cel-

lular functions, large scale experimental projects are performed as collaborative

efforts involving many laboratories in many countries. The main aims of these

projects are to provide maps of the genetic information of different organisms

(the genome projects), to derive as much structural information as possible on

the products of the corresponding genes (the structural genomics projects), and

to relate these genes to the function of their products, usually deduced from

their structure (the functional genomics projects). The success of these projects

is completely changing the landscape of research in biology. As of February

2004, more than 170 whole genomes have been sequenced, corresponding to a

database of over a million gene sequences. The need to store this data efficiently

and to analyze its contents has led to the emergence of a collaborative effort be-

tween computer science and biology, referred to as bio-informatics. In parallel,

the repository of biomolecular structures [Bernstein et al. 1977; Berman et al.

2000] contains more than 24,000 structures of proteins and nucleic acids. The

similar need to organize and analyze the structural information contained in this

database is leading to the emergence of another partnership between computer

science and biology, namely biogeometry.

Significance of shape. Molecular structure or shape and chemical reactivity

are highly correlated as the latter depends on the positions of the nuclei and elec-

trons within the molecule. Indeed, chemists have long used three-dimensional

plastic and metal models to understand the many subtle effects of structure on

reactivity and have invested in experimentally determining the structure of im-

portant molecules. The same applies to biochemistry, where structural genomics

projects are based on the premise that the structure of biomolecules implies their

function. This premise rests on a number of specific and quantifiable correlations:

• enzymes fold into unique structures and the three-dimensional arrangement

of their side-chains determines their catalytic activity;

• there is theoretical evidence that the mechanisms underlying protein complex

formation depend on the shapes of the biomolecules involved [Levy et al.

2004];

• the folding rate of many small proteins correlates with a gross topological

parameter that quantifies the difference between distance in space and along

the main-chain [Plaxco et al. 1998; Alm and Baker 1999; Muñoz and Eaton

1999; Alm et al. 2002].

There is also evidence that the geometry of a protein plays a major role in

defining its tolerance to mutation [Koehl and Levitt 2002]. We note in passing

that structural biologists often refer to the ‘topology’ of a biomolecule when

they mean the ‘geometry’ or ‘shape’ of the same. A common concrete model
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representing this shape is a union of balls, in which each ball corresponds to an

atom. Properties of the biomolecule are then expressed in terms of properties of

the union. For example, the potential active sites are detected as cavities [Liang

et al. 1998c; Edelsbrunner et al. 1998; Liang et al. 1998b] and the interaction

with the environment is quantified through the surface area and/or volume of

the union of balls [Eisenberg and McLachlan 1986; Ooi et al. 1987; Liang et al.

1998a]. In what follows, we discuss in detail the geometric properties of union

of balls, and relate them to the physical properties of the biomolecules they

represent.

Outline. Section 2 describes biomolecules, and surveys their different levels of

representation, focusing on the hard sphere models used in nearly all molecu-

lar simulation. Section 3 describes the relationship between the geometry of a

biomolecule and its energetics. Section 4 surveys analytical and approximate

methods used in biomolecular simulations for computing the area and volume of

a molecule, and their derivatives with respect to the atomic coordinates. Sec-

tion 5 develops the mathematical background needed to give compact formulas

for geometric measurements. Section 6 discusses implementations of these for-

mulas and presents experimental results. Section 7 concludes the paper with a

discussion of future research directions.

2. Biomolecules

Following the Greek philosopher Democritus, who proclaimed that all matter

is an assemblage of atoms, we can build a hierarchy that relates life to atoms.

All living organisms can be described as arrangements of cells, the smallest units

capable of carrying functions important for life. Cells can be divided into or-

ganelles, which are themselves assemblies of biomolecules. These biomolecules

are usually polymers of smaller subunits, whose atomic structures are known

from standard chemistry. There are many remarkable aspects to this hierarchy,

one of them being that it is ubiquitous to all life forms, from unicellular or-

ganisms to complex multicellular species like us. Unraveling the secrets behind

this hierarchy has become one of the major challenges of the twentieth and now

twenty-first centuries. While physics and chemistry have provided significant

insight into the structure of the atoms and their arrangements in small chemi-

cal structures, the focus now is set on understanding the structure and function

of biomolecules, mainly nucleic acids and proteins. Our presentation of these

molecules follow the general dogma in biology that states that the genetic infor-

mation contained in DNA is first transcribed to RNA molecules which are then

translated into proteins.

DNA. Deoxyribonucleic acid is a long polymer built from four different building

blocks, the nucleotides. The sequence in which the nucleotides are arranged

contains the entire information required to describe cells and their functions.
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Figure 1. Visualizing protein-ligand interaction. Barnase is a small protein

of 110 residues which has an endonuclease activity— it is able to cleave DNA

fragments. Here we show the complex it forms with the small DNA fragment

d(CGAC) [Buckle and Fersht 1994], using three different types of visualization.

The coordinates are taken from the PDB file 1BRN. The protein is shown in

green, and the DNA fragment in red.

Top left: Cartoon. This representation provides a high level view of the local

organization of the protein in secondary structures, shown as idealized helices

and strands. The DNA is shown as a short rod. This view highlights the position

of the binding site where the DNA sits.

Top right: Skeletal model. This representation uses lines to represent bonds;

atoms are located at their endpoints where the lines meet. It emphasizes the

chemical nature of both molecules: for example, the four aromatic rings of the

nucleotides of the DNA molecule are clearly visible.

Bottom: Space-filling diagram. Atoms are represented as balls centered at the

atoms, with radii equal to the van der Waals radii of the atoms. This represen-

tation shows the tight binding between the protein and the ligand, that was not

obvious from the other diagrams. Each of the representations is complementary

to the others, and usually the biochemist uses all three when studying a pro-

tein, alone or, as illustrated here, in interaction with a ligand. The top panels

were drawn using MOLSCRIPT [Kraulis 1991] and the bottom one with Pymol

(http://www.pymol.org).
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Despite this essential role in cellular functions, DNA molecules adopt surprisingly

simple structures. Each nucleotide contains two parts, a backbone consisting of

a deoxyribose and a phosphate, and an aromatic base, of which there are four

types: adenine (A), thymine (T), guanine (G) and cytosine (C). The nucleotides

are capable of being linked together to form a long chain, called a strand. Cells

contain strands of DNA in pairs that are exact mirrors of each other. When

correctly aligned, A pairs with T, G pairs with C, and the two strands form a

double helix [Watson and Crick 1953]. The geometry of this helix is surprisingly

uniform, with only small, albeit important, structural differences between regions

of different sequences. The order in which the nucleotides appear in one DNA

strand defines its sequence. Some stretches of the sequence contain information

that can be translated first into an RNA molecule and then into a protein. These

stretches are called genes; the ensemble of all genes of an organism constitutes its

genome or genetic information. The remainder is junk DNA, which is assumed to

correspond to fragments of genes that have been lost over the course of evolution.

The DNA strands can stretch for millions of nucleotides. The size of the strands,

as well as the fraction of junk DNA vary greatly between organisms and do not

necessarily reflect differences in the complexity of the organisms. For example,

the wheat genome contains approximately 1.6 · 1010 bases, which is close to

five times the size of the human genome. For a complete list of the genomes,

see http://wit.integratedgenomics.com/GOLD/ [Bernal et al. 2001]. The whole

DNA molecules of more than 170 organisms have been sequenced in the existing

genome projects, and many others are underway. There are more than a million

genes that have been extracted from the DNA sequences and are collected in

databases; see http://www.ebi.ac.uk/embl.

RNA. Ribonucleic acid molecules are very similar to DNA, being formed as

sequences of four types of nucleotides, namely A, G, C, and uracil (U), which

is a derivative of thymine. The sugar in the nucleotides of RNA is a ribose,

which includes an extra oxygen compared to deoxyribose. The presence of this

bulky extra oxygen prevents the formation of long and stable double helices. The

single-stranded RNA can adopt a large variety of conformations, which remain

difficult to predict based on its sequence. Interestingly, RNA is considered an

essential molecule in the early steps of the origin of life. It is generally accepted

now that before the appearance of living cells, the assemblies of self-replicating

molecules were RNAs. In this early world, a single type of molecule performed

both the function of active agents and the repository of its own description

[Gilbert 1986; Gesteland and Atkins 1993; Cech 1993]. The activity of the

RNA was related to its three-dimensional shape, while the coding corresponded

to its linear sequence. This single molecule world had limitations since any

modification of the RNA meant to improve its catalytic function could lead to

a loss of its coding capabilities. Cellular life has evolved from this primary

world by separating the two functions. RNA molecules now mainly serve as
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templates that are used to synthesize the active molecules, namely the proteins.

The information needed to synthesize the RNA is read from the genes coded

by the DNA. It is assumed that DNA molecules evolved as a more stable, and

consequently more reliable form of RNAs for storage purpose.

Proteins. While all biomolecules play an important part in life, there is some-

thing special about proteins, which are the products of the information contained

in the genes. They are the active elements of life whose chemical activities regu-

late all cellular activities. According to Jacques Monod, it is in the protein that

lies the secret of life: “C’est à ce niveau d’organisation chimique que ĝıt, s’il y

en a un, le secret de la vie” [Monod 1973]. As a consequence, studies of their

sequence and structure occupy a central role in biology.

Proteins are heteropolymer chains of amino acids, often referred to as residues.

This term comes from chemistry and describes the material found at the bottom

of a reaction tube once a protein has been cut into pieces in order to determine

its composition. There are twenty types of amino acids, which share a common

backbone and are distinguished by their chemically diverse side-chains, which

range in size from a single hydrogen atom to large aromatic rings and can be

charged or include only nonpolar saturated hydrocarbons; see Table 1. The order

Type Amino acids

nonpolar glycine, alanine, valine, leucine, isoleucine,

proline, methionine, tryptophan, phenylalanine

polar (neutral) serine, threonine, asparagine, glutamine,

cysteine, tyrosine

polar (acidic) aspartic acid, glutamic acid

polar (basic) lysine, arginine, histidine

Table 1. Classification of the 20 amino acids according to the chemical proper-

ties of their side-chains [Timberlake 1992]. Nonpolar amino acids do not have

concentration of electric charges and are usually not soluble in water. Polar

amino acids carry local concentration of charges, and are either globally neu-

tral, negatively charged (acidic), or positively charged (basic). Acidic and basic

amino acids are classically referred to as electron acceptors and electron donors,

respectively, which can associate to form salt bridges in proteins.

in which amino acids appear defines the primary sequence of the protein. In its

native environment, the polypeptide chain adopts a unique three-dimensional

shape, referred to as the tertiary or native structure of the protein. In this

structure, nonpolar amino acids have a tendency to re-group and form the core,

while polar amino acids remain accessible to the solvent. The backbones are

connected in sequence forming the protein main-chain, which frequently adopts

canonical local shapes or secondary structures, such as α-helices and β-strands.
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The former is a right handed helix with 3.6 amino acids per turn, while the

latter is an approximately planar layout of the backbone. In the tertiary struc-

ture, β-strands are usually paired in parallel or anti-parallel arrangements, to

form β-sheets. On average, the protein main-chain consists of about 25% in α-

helix formation, 25% in β-strands, with the rest adopting less regular structural

arrangements [Brooks et al. 1988]. From the seminal work of Anfinsen [1973],

we know that the sequence fully determines the three-dimensional structure of

the protein, which itself defines its function. While the key to the decoding of

the information contained in genes was found more than fifty years ago (the

genetic code), we have not yet found the rules that relate a protein sequence

to its structure [Koehl and Levitt 1999; Baker and Sali 2001]. Our knowledge

of protein structure therefore comes from years of experimental studies, either

using X-ray crystallography or NMR spectroscopy. The first protein structures

to be solved were those of hemoglobin and myoglobin [Kendrew et al. 1960; Pe-

rutz et al. 1960]. Currently, there are more than 16,000 protein structures in the

database of biomolecular structures [Bernstein et al. 1977; Berman et al. 2000];

see http://www.rcsb.org.

Visualization. The need for visualizing biomolecules is based on the early

understanding that their shape determines their function. Early crystallogra-

phers who studied proteins and nucleic acids could not rely—as it is common

nowadays—on computers and computer graphics programs for representation

and analysis. They had developed a large array of finely crafted physical models

that allowed them to have a feeling for these molecules. These models, usually

made out of painted wood, plastic, rubber and/or metal were designed to high-

light different properties of the molecule under study. In the space-filling models,

such as CPK [Corey and Pauling 1953; Koltun 1965], atoms are represented as

spheres, whose radii are the atoms’ van der Waals radii. They provide a volu-

metric representation of the biomolecules, and are useful to detect cavities and

pockets that are potential active sites. In the skeletal models, chemical bonds

are represented by rods, whose junctions define the position of the atoms. These

models were used for example in [Kendrew et al. 1960], which studied myoglobin.

They are useful to the chemists by highlighting the chemical reactivity of the

biomolecules and, consequently, their potential activity. With the introduction of

computer graphics to structural biology, the principles of these models have been

translated into software such that molecules could be visualized on the computer

screen. Figure 1 shows examples of computer visualizations of a protein-DNA

interaction, including space-filling and skeletal representations.

3. Biomolecular Modeling

While the structural studies provide the necessary data on biomolecules, the

key to their success lies in unraveling the connection between structure and
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function. A survey of the many modeling initiatives motivated by this question is

beyond the scope of this paper; detailed descriptions of biomolecular simulation

techniques and their applications can be found in [Leach 2001; Becker et al.

2001]. We shall focus here on those in which geometry plays an essential role,

mainly in the definition and computation of the energy of the biomolecule.

The apparition of computers, and the rapid increase of their power has given

hope that theoretical methods can play a significant role in biochemistry. Com-

puter simulations are expected to predict molecular properties that are inacces-

sible to experimental probes, as well as how these properties are affected by a

change in the composition of a molecular system. For example, thermodynamics

and kinetics play an important role in most functions of proteins. Proteins have

to fold into a stable conformation in order to be active. Improper folding leads

to inactive proteins that can accumulate and lead to disease (such as the prion

proteins). Many proteins also adopt slightly different conformations in different

environments. The cooperative rearrangement of hemoglobin upon binding of

oxygen, for example, is essential for oxygen transport and release [Perutz 1990].

Predicting the equilibrium conformation of a protein in solution remains a ”holy

grail” in structural biology. In addition, while a few experimental probes ex-

ist to monitor protein dynamics events, such as hydrogen exchange experiments

in NMR and small angle scattering of x-rays or neutrons, they remain elusive

mainly because of the huge hierarchy of time-scale they involve. Biomolecular

simulations have been designed to solve some of these problems. In particu-

lar, their aims are to describe the thermodynamic equilibrium properties of the

system under study, through sampling of its free energy surface, as well as its

dynamical properties.

Energy function. The state of a biomolecule is usually described in terms of its

energy landscape. The native state corresponds to a large basin in this landscape,

and it is mostly the structure of this basin that is of interest. Theoretically,

the laws of quantum mechanics completely determine the wave function of any

given molecule, and, in principle, we can compute the energy eigenvalues by

solving Schrödinger’s equation. In practice, however, only the simplest systems

such as the hydrogen atom have an exact, explicit solution to this equation and

modelers of large molecular systems must rely on approximations. Simulations of

biomolecules are based on a space-filling representation of the molecule, in which

the atoms are modeled by hard spheres that interact through empirical forces.

A typical, semi-empirical energy function used in classical molecular simulation

has the form

U =
∑

b

kb (rb − r0
b )2 +

∑

b

ka (θa − θ0
a)2 +

∑

t

kt

(

1 + cos n(φt − φ0
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[Levitt et al. 1995; Liwo et al. 1997a; 1997b; MacKerell et al. 1998; Kaminski

et al. 2001; Price and Brooks 2002]. The terms in the first three sums repre-

sent bonded interactions: covalent bonds, valence angles, and torsions around

bonds. The two terms in the last sum represent nonbonded interactions: a

Lennard-Jones potential for van der Waals forces and the Coulomb potential for

electrostatics. This sum usually excludes pairs of atoms separated by one, or two

covalent bonds. The force constants, k, the minima, r0, θ0 and φ0, the Lennard

Jones parameters, A and B, and the atomic charges q define the force field. They

are derived from data on small organic molecules, from both experiments and ab

initio quantum calculations.

Note that U given above corresponds to the internal energy of the molecule,

while we really need its free energy to describe its thermodynamic state. In

thermodynamics, the term free energy denotes the total amount of energy in a

system which can be converted to work. For a molecule, ”work” is the transfer of

energy related to organized motion. The free energy F is the difference between

the internal energy of the molecule, and its entropy, where the entropy is a

measure of disorder:

F = U − TS,

where T is the temperature of the system. Ideally, F is minimum when U is

minimum and S is maximum. These two conditions however cannot be satisfied

simultaneously by a molecule: U is minimum when there are many favorable

contacts, leading to a single compact conformation for the molecule, while S is

maximum when there is no privileged conformation for the molecule. In general,

the termodynamic equilibrium is reached through a compromise between these

two terms. To get an estimate of the free energy of a molecule, we need to

compute its internal energy, and sample the conformational space it can access.

This sampling is performed through simulations, which are discussed below.

Simulation algorithms. There are three main types of algorithms used in this

field, which we now describe.

Molecular dynamics simulations proceed by solving the classical equations of

motions for the positions, velocities and accelerations of all atoms and molecules

of the system under study. A state of the system is either described in cartesian

or internal coordinates and the solution is computed numerically. In early work,

macromolecules were simulated in vacuo, and only heavy (no hydrogen) atoms

were included [McCammon et al. 1977]. This has changed as modern computers

are now sufficiently powerful to simulate biomolecules in atomic detail using

all-atom representations [Levitt and Sharon 1988]. The strengths of molecular

dynamics are that it efficiently samples the states accessible to a system around

its energy minimum, and that it provides kinetic data on the transitions between

these states [Cheatham and Kollman 2000; Karplus and McCammon 2002]. The

weakness of molecular dynamics is an inability to access long time-scales (on
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the order of one microsecond or more even for small biomolecules [Duan and

Kollman 1998].)

Monte Carlo techniques applied to biomolecular studies use stochastic moves,

corresponding to rotation, translation, insertion or deletion of whole molecules,

to sample the conformational space available to the molecule under study, and

to calculate ensemble averages of physical or geometric quantities of interest,

such as energy, or the fluctuation of some specific inter-atomic distances. In the

limit of long Monte Carlo simulations, these ensemble averages correspond to

thermodynamics equilibrium properties. A strength of Monte Carlo simulations

is that they can be adapted to explore unfavorable regions of the energy land-

scape. This has been used to sample conformations of small simplified models of

proteins, yielding a full characterization of the thermodynamics of their folding

process [Hao and Scheraga 1994a; Hao and Scheraga 1994b].

A molecular mechanics study is not really a simulation as such, rather a

mechanical investigation of the properties of one or more molecules. A good

example would be finding the minimum of the potential energy U of a molecule.

Note that U does not include entropic effects. Thus, the conformation of a

molecule obtained through minimization of U does not necessarily correspond

to the thermodynamic equilibrium state, which corresponds to the minimum of

the free energy.

Protein solvation. Soluble biomolecules adopt their stable conformation in

water, and are unfolded in the gas phase. It is therefore essential to account for

water in any modeling experiment. Molecular dynamics simulation that include

a large number of solvent molecules are the state of the art in this field, but they

are inefficient as most of the computing time is spent on updating the position

of the water molecule. It should further be noted that it is not always possible

to account for the interaction with the solvent explicitly. For example, energy

minimization of a system including both a protein and water molecules does not

account for the entropy of water, which would behave like ice with respect to

the protein. An alternative approach takes the effect of the solvent implicitly

into account. In such an implicit solvent model, the effects of water is included

in an effective solvation potential, W = Welec + Wnp, in which the first term

accounts for the molecule-solvent electrostatics polarization, and the second for

the molecule-solvent van der Waals interactions and for the formation of a cavity

in the solvent. There is a large body of work that focuses on computing Welec.

A survey of the corresponding models is beyond the scope of this paper and we

refer the reader to the excellent review [Simonson 2003] for more information.

Here we focus on computing Wnp, the nonpolar effect of water on the bio-

molecule, sometimes referred to as the hydrophobic effect. Biomolecules contain

both hydrophilic and hydrophobic parts. In their folded states, the hydrophilic

parts are usually at the surface, where they can interact with water, and the
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Figure 2. Different notions of protein surface. The van der Waals surface

of a molecule (shown in red) is the surface of the union of balls representing

all atoms, with radii set to the van der Waals radii. The accessible surface of

the same molecule (shown in green) is the surface generated by the center of

a solvent sphere (marked S) rolling on the van der Waals surface. The radius

of the solvent sphere is usually set to 1.4 Å, the approximate radius of a water

molecule. The accessible surface is also the obtained after expanding the radius

of the atomic spheres by the radius of the solvent sphere. The molecular surface

(shown in magenta) is the envelope generated by the rolling sphere. It differs

from the van der Waals surface by covering portions of the volume inaccessible

to the rolling sphere.

hydrophobic parts are buried in the interior, where they form an “oil drop with

a polar coat” [Kauzmann 1959].

Quantifying the hydrophobic effect. In order to quantify the hydrophobic

effect, Lee and Richards introduced the concept of the solvent-accessible surface

[Lee and Richards 1971], illustrated in Figure 2. They computed the accessi-

ble area of each atom in both the folded and extended state of a protein, and

found that the decrease in accessible area between the two states is greater for

hydrophobic than for hydrophilic atoms. These ideas were further refined by

Eisenberg and McLachlan [1986], who introduced the concept of a solvation free

energy, computed as a weighted sum of the accessible areas Ai of all atoms i of

the biomolecule:

Wnp =
∑

i

αiAi,

where αi is the atomic solvation parameter. It is not clear, however, which surface

area should be used to compute the solvation energy [Wood and Thompson

1990; Tunon et al. 1992; Simonson and Brünger 1994]. There is also some

evidence that for small solute, the hydrophobic term Wnp is not proportional to

the surface area [Simonson and Brünger 1994], but rather to the solvent excluded

volume of the molecule [Lum et al. 1999]. A volume-dependent solvation term

was originally introduced by Gibson and Scheraga [1967] as the hydration shell
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model. Note that the ambiguity in the choice of the definition of the surface

of a protein extends to the choice of its volume definition. Within this debate

on the exact form of the solvation energy, there is however a consensus that

it depends on the geometry of the biomolecule under study. Inclusion of Wnp

in a molecular simulation therefore requires the calculation of accurate surface

areas and volumes. If the simulations rely on minimization, or integrate the

equations of motion, the derivatives of the solvation energy are also needed. The

calculation of second derivatives is also of interest in studying the normal modes

of a biomolecule in a continuum solvent.

4. Computing Volumes and Areas

In this section, we review existing approaches to computing the surface area

and/or volume of a biomolecule represented as a union of balls. The origi-

nal approach of Lee and Richards [1971] computed the accessible surface area

by first cutting the molecule with a set of parallel planes. The intersection of

a plane with an atomic ball, if it exists, is a circle which can be partitioned

into accessible arcs on the boundary and occluded arcs in the interior of the

union. The accessible surface area of atom i is the sum of the contributions

of all its accessible arcs, computed approximately as the product of the arc

length and the spacing between the plane. This method was originally imple-

mented in the program ACCESS [Lee and Richards 1971] and later in NACCESS

(http://wolf.bms.umist.ac.uk/naccess/). Shrake and Rupley [1973] refined Lee

and Richards’ method and proposed a Monte Carlo numerical integration of the

accessible surface area. Their method placed 92 points on each atomic sphere,

and determined which points were accessible to solvent (not inside any other

sphere). Efficient implementations of this method include applications of look-

up tables [Legrand and Merz 1993], of vectorized algorithm [Wang and Levinthal

1991] and of parallel algorithms [Futamura et al. 2004]. Similar numerical meth-

ods have been developed for computing the volume of a union of balls [Rowlinson

1963; Pavani and Ranghino 1982; Gavezzotti 1983].

The surface area and/or volume computed by numerical integration over a set

of points, even if closely spaced, is not accurate and cannot be readily differenti-

ated. To improve upon the numerical methods, analytical approximations to the

accessible surface area have been developed, which either treat multiple overlap-

ping balls probabilistically [Wodak and Janin 1980; Hasel et al. 1988; Cavallo

et al. 2003] or ignore them altogether [Street and Mayo 1998; Weiser et al.

1999a]. Better analytical methods describe the molecule as a union of pieces

of balls, each defined by their center, radius, and arcs forming their boundary,

and subsequently apply analytical geometry to compute the surface area and

volume [Richmond 1984; Connolly 1985; Dodd and Theodorou 1991; Petitjean

1994; Irisa 1996]. Pavani and Ranghino [1982] proposed a method for computing

the volume of a molecule by inclusion-exclusion. In their implementation, only
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intersections of up to three balls were considered. Petitjean however noticed

that practical situations for proteins frequently involve simultaneous overlaps of

up to six balls [Petitjean 1994]. Subsequently, Pavani and Ranghino’s idea was

generalized to any number of simultaneous overlaps by Gibson and Scheraga

[Gibson and Scheraga 1987] and by Petitjean [Petitjean 1994], applying a theo-

rem that states that higher-order overlaps can always be reduced to lower-order

overlaps [Kratky 1978]. Doing the reduction correctly remains however compu-

tationally difficult and expensive. The Alpha Shape Theory solves this problem

using Delaunay triangulations and their filtrations, as described by Edelsbrunner

[Edelsbrunner 1995]. It will be presented in greater detail in the next section.

The distinction between approximate and exact computation also applies to

existing methods for computing the derivatives of the volume and surface area of

a molecule with respect to its atomic coordinates [Kundrot et al. 1991; Gogonea

and Osawa 1994; Gogonea and Osawa 1995; Cossi et al. 1996]. In the case

of the derivatives of the surface area, computationally efficient methods were

implemented in the MSEED software by Perrot et al. [1992] and in the SASAD

software by Sridharan et al. [1994]. All these methods introduce approximations

to deal with singularities caused by numerical errors or by discontinuities in the

derivatives [Gogonea and Osawa 1995]. There is also an inherent difficulty in

using a potential based on surface area or volume in biomolecular simulations.

Although the area and volume are continuous in the position of the atoms, their

derivatives are not. This problem of discontinuities was studied in more details

for surface area calculation [Perrot et al. 1992; Wawak et al. 1994].

The complexity of the computation of the area and volume of a union of

balls, the problems of singularities encountered when computing their deriva-

tives, and the inherent existence of discontinuities have led to the development of

alternative geometric representations of molecules. Here we mention the Gauss-

ian description of molecular shape, that allows for easy analytical computation

of surface area, volume and derivatives [Grant and Pickup 1995; Weiser et al.

1999b], and the molecular skin, which will be described in the next section.

5. Alpha Shape Theory

In this section, we discuss in some detail the inclusion-exclusion approach

to computing area, volume, and their derivatives. It is based on the concept

of alpha complexes [Edelsbrunner et al. 1983; Edelsbrunner and Mücke 1994],

which are sub-complexes of the Delaunay triangulation [Delaunay 1934] of a set

of spheres.

Voronoi decomposition and dual complex. Consider a finite set of spheres

Si with centers zi ∈ R
3 and radii ri ∈ R and let Bi be the ball bounded by

Si. To allow for varying radii, we measure square distance of a point x from

Si using πi(x) = ‖x − zi‖
2
− r2

i . The Voronoi region of Si consists of all points
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x at least as close to Si as to any other sphere: Vi = {x ∈ R
3 | πi(x) ≤

πj(x)}. As illustrated in Figure 3, the Voronoi region of Si is a convex polyhedron

obtained as the common intersection of finitely many closed half-spaces, one per

sphere Sj 6= Si. If Si and Sj intersect in a circle then the plane bounding the

corresponding half-space passes through that circle. It follows that the Voronoi

regions decompose the union of balls Bi into convex regions of the form Bi ∩Vi.

The boundary of each such region consists of spherical patches on Si and planar

patches on the boundary of Vi. The spherical patches separate the inside from

the outside and the planar patches decompose the inside of the union. The

Figure 3. Voronoi decomposition and dual complex. Given a finite set of

disks, the Voronoi diagram decomposes the plane into regions in which one circle

minimizes the square distance measured as ‖x − zi‖
2 − r

2
i . In the drawing,

we restrict the Voronoi diagram to within the portion of the plane covered by

the disks and get a decomposition of the union into convex regions. The dual

Delaunay triangulation is obtained by drawing edges between circle centers of

neighboring Voronoi regions. To draw the dual complex of the disks we limit

ourselves to edges and triangles between centers whose corresponding restricted

Voronoi regions have a nonempty common intersection.

Delaunay triangulation is the dual of the Voronoi diagram, obtained by drawing

an edge between the centers of Si and Sj if the two corresponding Voronoi

regions share a common face. Furthermore, we draw a triangle connecting zi,

zj and zk if Vi, Vj and Vk intersect in a common line segment, and we draw a

tetrahedron connecting zi, zj , zk and z` if Vi, Vj , Vk and V` meet at a common

point. Assuming general position of the spheres, there are no other cases to

be considered. We refer to this as the generic case but hasten to mention that

because of limited precision it is rare in practice. Nevertheless, we can simulate

a perturbation in our algorithm [Edelsbrunner and Mücke 1990], which is an

effective method to consistently unfold potentially complicated degenerate cases

to nondegenerate ones.
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Suppose we limit the construction of the dual triangulation to within the union

of balls, as illustrated in Figure 3. In other words, we draw a dual edge between zi

and zj only if Bi ∩Vi and Bj ∩Vj share a common face, and similarly for triangles

and tetrahedra. The result is a sub-complex of the Delaunay triangulation which

we refer to as the dual complex K = K0 of the set of spheres. For various

reasons, including the definition of pockets in biomolecules [Edelsbrunner et al.

1998], it is useful to alter the spheres by increasing or decreasing their radii. We

do this in a way that leaves the Voronoi diagram invariant. Modeling growth

with a positive real number and shrinkage with a positive real multiple of the

imaginary unit, both denoted as α, we obtain a real number α2 that may be

positive or negative. For each i let Si(α) be the sphere with center zi and radius
√

r2
i + α2. Interpreting spheres with imaginary radii as empty, the alpha complex

Kα of the spheres Si is the dual complex of the spheres Si(α). If we increase α2

continuously from −∞ to +∞ we get a continuous nested sequence of unions of

balls and a discrete nested sequence of alpha complexes.

Area and volume formulas. A simplex τ in the dual complex can be in-

terpreted abstractly as a collection of balls, one ball if it is a vertex, two if it

is an edge, etc. In this interpretation, the dual complex is a system of sets of

balls, and because every face of a simplex in K also belongs to K, this system

is closed under containment. It now makes sense to write vol
⋂

τ for the volume

of the intersection of the balls in τ . This is the kind of term we would see in

an inclusion-exclusion formula for the volume of the union of balls,
⋃

i Bi. As

proved in [Edelsbrunner 1995], the inclusion-exclusion formula that corresponds

to the dual complex gives indeed the correct volume.

Volume Theorem:

vol
⋃

i

Bi =
∑

τ∈K

(−1)dim τ vol
⋂

τ .

Here dim τ = card τ − 1 is the dimension of the simplex. This result overcomes

past difficulties by implicitly reducing higher-order to lower-order overlaps. An

added advantage of this formula is that the balls in each term form a unique geo-

metric configuration so that the analytic calculation of the volume can be done

without case analysis. Specifically, the balls in a simplex τ ∈ K are independent

in the sense that for every face υ ⊆ τ there exists a point that lies inside all balls

that belong to υ and outside all balls that belong to τ but not to υ.

A similar formula can be derived for the area of the boundary of the union of

balls. One way to arrive at this formula is to consider a sphere Si and to observe

that its contribution is the area of the entire sphere, 4πr2
i , minus the portion

covered by caps of the form Si ∩Bj , for j 6= i. The configuration of caps on Si

is but a spherical version of a configuration of disks, and computing its area is

the same problem as computing the volume of a set of balls, only one dimension

lower. To express that area as an alternating sum we need its dual complex,
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but this is nothing other than the link of Si in K, consisting of all simplices υ

that do not contain Bi but are faces of simplices that contain Bi: Bi 6∈ υ and

υ∪{Bi} ∈ K. Specifically, the area contribution of Si is the area of the sphere

minus the sum of (−1)dim υarea (Si ∩
⋂

υ). We collect all these contributions

and combine terms to get the final result.

Area Theorem:

area
⋃

i

Bi =
∑

τ∈K

(−1)dim τ area
⋂

τ .

We see that the principle of inclusion-exclusion is quite versatile, which is impor-

tant for applications in which we might want to measure aspects of the union of

balls that are similar to but different from its volume and surface area. Examples

are

• the total length of arcs in the boundary;

• voids of empty space surrounded by the union;

• weighted versions of the above.

Of the three extensions, the least obvious is how to measure voids. The other

two are needed to express the derivative of the weighted volume and area, which

are discussed next.

Area and volume derivatives. We are interested in the derivatives of the area

and the volume of a union of n balls with respect to their positions in space. Since

we keep the radii fixed, we may specify the configuration by the vector z ∈ R
3n of

center coordinates. The area thus becomes a function f : R
3n → R, and similar

for the volume. The derivative of f at z is the best linear approximation at that

configuration, Dfz : R
3n → R. This linear function is completely specified by

the gradient a = ∇f(z), namely

Dfz(t) = 〈a, t〉,

in which t ∈ R
3n is the motion vector. In [Edelsbrunner and Koehl 2003; Bryant

et al. 2004] we gave formulas for the derivatives by specifying the gradient in

terms of simple parameters readily computable from the input spheres. To state

the result for the area, let ζij = ‖zi − zj‖ be the distance between the two centers

and write uij = (zi−zj)/ζij for the unit vector in the direction of the connecting

line. For each k 6= i, j let

wijk = uik − 〈uik, uij〉 · uij

be the component of uik normal to uij , and let uijk = wijk/‖wijk‖ be the unit

vector in that normal direction. Finally, let rijk be half the distance between

the two points at which the spheres Si, Sj , and Sk meet. For completeness, we

state the result for the case in which the area contribution is weighted by the

constant αi, the corresponding atomic solvation parameter.
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Weighted Area Derivative Theorem: The gradient a∈R
3n of the weighted

area derivative at a configuration of balls z ∈ R
3n is





a3i+1

a3i+2

a3i+3



 =
∑

j

(

sij · aij +
∑

k

bijk · aijk

)

,

aij = π

(

(αiri + αjrj) − (αiri − αjrj)
r2
i − r2

j

ζ2
ij

)

· uij ,

aijk = 2rijk

αiri − αjrj

ζij

· uijk,

for 0 ≤ i < n. The sums are over all boundary edges zizj and their triangles

zizjzk in K.

The geometrically interesting terms in the formula are sij , the fraction of the

circle Si ∩Sj that belongs to the boundary of the union, and bijk, the fraction

of the line segment connecting the point pair Si ∩Sj ∩Sk that belongs to the

Voronoi segment Vi ∩Vj ∩Vk. A remarkable aspect of the formula is the existence

of terms that depend on three rather than just two spheres. These terms vanish

in the unweighted case if all radii are the same. We can reuse some of the

notation to state the result for the volume. We again state the result for the

case in which the volume of Bi ∩Vi is weighted by the constant αi.

Weighted Volume Derivative Theorem: The gradient v ∈ R
3n of the

weighted volume derivative of a configuration of balls z ∈ R
3n is





v3i+1

v3i+2

v3i+3



 =
∑

j

bijr
2
ijπ(yij · uij + xij · vij),

yij =
αi + αj

2
+

(αj − αi)(r
2
i − r2

j )

2ζ2
ij

,

xij =
2(αi − αj)

3ζij

,

for 0 ≤ i < n. The sum is over all edges zizj in K.

Here rij is the radius of the disk spanned by the circle Si ∩Sj and bij is the

fraction of this disk that belongs to the corresponding Voronoi polygon, Vi ∩Vj .

The most interesting term in this formula is the average vector vij from the

center of the disk to the boundary of its intersection with the Voronoi polygon.

In computing the average, we weight each point on this boundary by the area

of the infinitesimal triangle it defines with the center. This vector is used to

express the gain and loss of weighted volume as the disk rotates and trades off

contributions of the two balls it separates. In the unweighted case, we gain as

much as we lose which explains why xij vanishes and thus cancels any effect vij

would have.
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Continuity of the derivative. If considered over all configurations, the deriv-

ative of f is a function Df : R
3n ×R

3n → R. As described earlier, for each state

z ∈ R
3n, this is a linear function R

3n → R completely specified by the gradient

at z. It is convenient to introduce another function ∇f : R
3n → R

3n such that

Df(z, t) = 〈∇f(z), t〉. For the purpose of simulating molecular motion, it is im-

portant that ∇f be continuous, at least mostly, and if there are discontinuities,

that we are able to recognize and predict them. Unfortunately, the derivatives of

the weighted area and the weighted volume are both not everywhere continuous.

The good news is that the formulas in the two Derivative Theorems permit a

complete analysis.

Interestingly, a configuration at which ∇f is not continuous is necessarily a

configuration at which the dual complex is ambiguous, and this is true for the

area and the volume. For example, the area derivative has a discontinuity at

configurations that contain two spheres touching in a point that belongs to the

boundary of the union. The set of configurations z that contain such spheres is a

(3n−1)-dimensional subset of R
3n. In contrast, the volume derivative has discon-

tinuities only at configurations that contain two equal spheres or three spheres

that meet in a common circle, both in the weighted and the unweighted case.

The set of such configurations is a (3n− 3)-dimensional subset of R
3n. A molec-

ular dynamics simulation has to do extra work to compensate for the missing

information whenever it runs into a discontinuity of the derivative [Carver 1978;

Gear and Østerby 1984]. This occurs less often for the volume than for the area,

firstly because the dimension of such configurations is less and secondly because

the specific structure of these configurations makes them physically unlikely.

Voids and pockets. A void V is a maximal connected subset of space that

is disjoint from and completely surrounded by the union of balls. Its surface

area is easily computed by identifying the sphere patches on the boundary of the

union that also bound the void. It helps to know that there is a deformation

retraction from
⋃

i Bi to the dual complex [Edelsbrunner 1995]. Similarly, there

is a corresponding void in K represented by a connected set of simplices in the

Delaunay triangulation, that do not belong to K. This set U is open and its

boundary (the simplices added by closure) forms what one may call the dual

complex of the boundary of V . We use normalized angles to select the relevant

portions of the intersections of balls. To define this concept, let υ be a face of

a simplex τ and consider a sufficiently small sphere in the affine hull of τ whose

center is in the interior of υ. The normalized angle ϕυ,τ is the fraction of the

sphere contained in τ . For example, if τ is a tetrahedron then we get the solid

angle at a vertex, the dihedral angle at an edge, and 1
2

at a triangle.

Void Area Theorem:

areaV =
∑

υ⊆τ

(−1)dim υϕυ,τ area
⋂

υ.
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The sum is over all faces υ ∈ K of simplices τ ∈ U .

The correctness of the formula is not immediate and relies on an identity for

simplices proved in [Edelsbrunner 1995]. Similarly, we can use U to compute the

volume of V .

Void Volume Theorem:

volV = volU −
∑

υ⊆τ

(−1)dim υϕυ,τ vol
⋂

υ.

The sum is over all faces υ ∈ K of simplices τ ∈ U .

Here, vol U is simply the sum of volumes of the tetrahedra of U . There are similar

angle-weighted formulas for the entire union of balls. It would be interesting

to generalize the Void Area and Volume Theorems to pockets as defined in

[Edelsbrunner et al. 1998]. In contrast to a void, a pocket is not completely

surrounded but connected to the outside through narrow channels. Again we

have a corresponding set of simplices in the Delaunay triangulation that do not

belong to the dual complex, but this set is partially closed at the places the

pocket connects to the outside. The inclusion-exclusion formulas still apply, but

there are cases in which the cancellation of terms near the connecting channel is

not complete and leads to slightly incorrect measurements.

Alternative geometric representations. The sensitivity of simulation soft-

ware to discontinuities in the derivative suggests that we approximate the surface

area by another function. For example, we may use a shell representation and

approximate area by the volume in that shell. This can be done with uniform

thickness everywhere, or with variable thickness that depends on the radii, such

as
⋃

i Bi(ε)−
⋃

i Bi(−ε), where the small positive ε affects the radii as formulated

in the definition of the alpha complex. The latter lends itself to fast computa-

tion because both the outer and the inner union have their dual complex in the

same Delaunay triangulation and measuring both takes barely more time than

measuring one. Another alternative to the union of balls is the molecular surface

explained in Figure 2. Here we roll a sphere with fixed radius r about a union of

balls. The rolling motion is captured by the boundary of another union in which

all balls grow by r in radius. For each patch, arc, and vertex in this boundary

the molecular surface contains a (smaller) sphere patch, a torus patch, and a

(reversed) sphere patch. We can therefore collect all patches of the molecular

surface using the dual complex of the grown balls and get the surface area by

accumulation. At rare occasions, the patches form self-intersections which leads

to slightly incorrect measurements. Computing these self-intersections can be

rather involved analytically [Bajaj et al. 1997]. A similar alternative to unions

of balls is the molecular skin as defined in [Edelsbrunner 1999]. Instead of torus

patches, it uses hyperboloids of one and two sheets to blend between the spheres;

see Figure 4. The surface is decomposed into simple patches by a mix of the
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Figure 4. Molecular skin in cut-away view. Half the surface of a small molecule

of about forty atoms.

Voronoi diagram and the Delaunay triangulation. These patches are free of

self-intersections and the area can be computed by accumulation, as before but

without running the risk of making mistakes. At this time, there is no complete

analysis of the volume and area derivatives available, neither for the molecular

surface nor the molecular skin.

6. Algorithm and Implementation

We have written a new version of the Alpha Shape software [Edelsbrunner

and Mücke 1994], specific to molecular simulation applications, implementing

the weighted surface area, the weighted volume, and the derivatives of both. The

software is distributed as and Open Source program under the name AlphaVol

at http://biogeometry.duke.edu/software/proshape.

Overview. The software takes as input a set of spheres Si in R
3, each specified

by the coordinates of its center zi and its radius ri. Such a set representing a

protein can for example be extracted from the corresponding pdb file using one

of several standard sets of van der Waals radii. The computation is performed

through three successive tasks:

1. Construct the Delaunay triangulation.

2. Extract the dual complex.

3. Measure the union using inclusion-exclusion.

The main difference to the old Alpha Shapes software is the speed resulting from

an improvement of all steps by about two orders of magnitude. We achieve this



THE GEOMETRY OF BIOMOLECULAR SOLVATION 263

through careful redesign of low-level computations (determinants in Task 1 and

term management in Task 3) and the limitation in scope (dual complex instead

of filtration of alpha complexes in Task 2). We review all three steps, focusing

on nonobvious implementation details that have an impact on the correctness

and running time of the software.

Delaunay triangulation. Our implementation of the Delaunay triangulation

is based on the randomized incremental algorithm described in [Edelsbrunner

and Shah 1996]. Following the paper’s recommendation, we use a minimalist

approach to storing the triangulation in a linear array of tetrahedra. For each

tetrahedron, we store the indices of its four vertices, the indices of the four

neighboring tetrahedra, a label, and the position of the opposite vertex in the

vertex list of each neighboring tetrahedron. For each vertex we use four double-

precision real numbers for the coordinates and the radius of the corresponding

sphere. The triangles and edges are implicit in this representation.

The triangulation is constructed incrementally, by adding one sphere at a

time. Before starting the construction, we re-index such that S1, S2, . . . , Sn is

a random permutation of the input spheres. To reduce the number of cases,

we choose four additional spheres with their centers at infinity so that all input

spheres are contained in the tetrahedron they define. Let Di be the Delaunay

triangulation of the four spheres at infinity together with S1, S2, . . . , Si. The

algorithm proceeds by iterating three steps:

For i = 1 to n,

1.1. find the tetrahedron τ ∈ Di−1 that contains zi;

1.2. add zi to decompose τ into four tetrahedra;

1.3. flip locally non-Delaunay triangles in the link of zi.

Step 1.1 is implemented using the jump-and-walk technique proposed by Mücke

et al. [1999]. Here we choose a small random sample of the vertices in the

current triangulation and walk from the vertex closest to zi to τ . In this walk, we

repeatedly test whether zi is inside a tetrahedron υ and whether υ remains in the

current Delaunay triangulation. These tests are decided by computing the signs

of the determinants of four 4-by-4 matrices, which place zi relative to the faces

of υ, and the sign of one 5-by-5 matrix. By noticing that any two of the 4-by-4

matrices share three rows (corresponding to zi and the vertices of a shared edge)

we find that 28 multiplications suffice to compute all five determinants. In Step

1.2, the sphere Si is sometimes discarded without decomposing τ , namely when

its Voronoi region is empty. This usually does not happen for molecular data.

A flip in Step 1.3 replaces two tetrahedra by three or three by two. We are also

prepared to remove a sphere by replacing four tetrahedra by one, but this again is

usually not necessary for molecular data. The fact that any arbitrary ordering of

the flips will successfully repair the Delaunay triangulation is nontrivial but has

been established in [Edelsbrunner and Shah 1996]. The numerical tests needed to
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decide which flips to make compute again signs of determinants of 4-by-4 and 5-

by-5 matrices. As before, we save time by recognizing common rows and reusing

partial results in the form of shared minors. An important ingredient in this

context is the treatment of singularities. Inexact versions of the numerical tests

are vulnerable to roundoff errors and can lead to wrong output. Following work in

computational geometry [Fortune and VanWyk 1996], we implemented both tests

using a so-called floating-point filter that first evaluates the tests approximately,

using floating-points arithmetic, and if the results cannot be trusted, switches to

exact arithmetic. As a side-benefit, we can now correctly recognize degenerate

cases and use a simulated perturbation to consistently reduce them to general

cases [Edelsbrunner and Mücke 1990].

Dual complex. Given the Delaunay triangulation D of the input spheres, we

construct the dual complex K ⊆ D by labeling the Delaunay simplices. Specifi-

cally, for each simplex τ ∈ D there is a threshold ατ such that τ ∈ Kα iff α2
τ ≤ α2.

Hence τ belongs to the dual complex iff α2
τ ≤ 0. We call τ a critical simplex if

ατ separates the case in which the balls Bi(α) defining τ have an empty common

intersection from the case in which they have a nonempty common intersection.

These simplices are characterized by the fact that all other balls are further than

orthogonal from the smallest sphere orthogonal to all balls Bi defining τ . (Two

balls Bi and Bj of centers zi and zj and radii ri and rj , respectively, are or-

thogonal iff ‖zi − zj‖
2

= r2
i + r2

j .) All other simplices are regular and need a

critical simplex they are face of to be included in the dual complex. To label the

Delaunay simplices, we therefore need to be able to recognize critical simplices

and to decide the signs of their square thresholds. Both tests can be expressed in

terms of the signs of the determinants of small matrices whose entries are center

coordinates and square radii of the input spheres. Detailed expressions for these

tests can be found in [Edelsbrunner 1992; Edelsbrunner and Mücke 1994].

We evaluate these tests with the same care for singularities and numerical

uncertainties as used in the construction of the Delaunay triangulation. Specifi-

cally, we apply filters and repeat the computation in exact arithmetic unless we

can be sure that the initial floating-point computation gives the correct sign.

Weighted surface area and volume. We compute the weighted volume of a

union of balls using the Volume Theorem in Section 4. The weights are worked

into the formula by decomposing each term, vol
⋂

τ , into dim τ + 1 terms using

the bisector planes also used in the Voronoi diagram. This decomposition is

natural since it is the easiest way to compute the volume of
⋂

τ in the first

place, even in the unweighted case.

We could do the same for the weighted area, effectively reducing the formula

in the Area Theorem further to an alternating sum in which every term is the

area of the intersection of a sphere with up to three half-spaces. Simple analytic

formulas for the area of such an intersection can be found in [Edelsbrunner and

Fu 1994]. We choose an alternative path deriving a similar formula (yielding the
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same result) from the angle-weighted formula given in the Void Area Theorem.

An adaptation of this formula to an entire union of balls gives

area
⋃

i

Bi =
∑

υ

(−1)dim υϕυ area
⋂

υ,

where the sum is over all simplices υ in the boundary of K and ϕυ is the nor-

malized angle around υ not covered by simplices that contain υ as a face. As

before, we further decompose each term into the intersection of a sphere and a

small number of half-spaces. The above sum is usually shorter than that in the

straight Area Theorem, which has a term for every simplex in the dual complex.

Another difference is that each term is the intersection of at most three balls

as opposed to at most four in the Area Theorem. The two differences compen-

sate for the extra effort of computing normalized angles and more, leading to

code that for proteins is about twice as fast as that based on the straight Area

Theorem.

Derivatives. We now explain how we compute the geometric ingredients in the

two Derivative Theorems stated in Section 5. For the area derivative, these are

the fractions sij and bijk. Both can be computed using inclusion-exclusion over

links inside the dual complex. Recall that sij is the fraction of the circle Si ∩Sj

that belongs to the boundary of the union of balls. Equivalently, it is the fraction

of the circle not covered by arcs of the form Si ∩Sj ∩Bk. We may interpret these

arcs as one-dimensional balls and measure their union using inclusion-exclusion,

not unlike the formula in the Volume Theorem. We find the same symmetry

in dimension in the corresponding combinatorial complexes. Specifically, the

(one-dimensional) dual complex of the arcs is isomorphic to the link of the edge

zizj in the dual complex of the balls. The link of this edge in the Delaunay

triangulation is a cycle and in K is a sub-complex consisting of vertices zk and

edges zkz`. Writing sk
ij and sk`

ij for the fractions of the circle inside Bk and inside

Bk ∩B`, we have

sij = 1 −
∑

k

sk
ij +

∑

k,`

sk`
ij ,

where the sums range over the link of the edge zizj in K. The computation of

bijk is similar but simpler because the dimension of the link of a triangle is only

zero, consisting of at most two vertices. Consider the line segment connecting

the two points at which Si, Sj and Sk meet and note that all points x on this line

segment have the same distance to the three spheres: πi(x) = πj(x) = πk(x).

Writing b`
ijk for the fraction of points x whose square distance from S` is less

than from the three defining spheres we get bijk = 1 −
∑

` b`
ijk, where the sum

is over the vertices z` in the link of the triangle. For further details refer to

[Bryant et al. 2004]. The same quantity but one dimension higher appears in

the volume derivative. Specifically, bij is the fraction of the disk Bij spanned by

the circle Si ∩Sj that belongs to the corresponding Voronoi polygon. Let Bk
ij
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be the subset of points x in this disk whose square distance to Sk is less than to

the two defining spheres: πk(x) < πi(x) = πj(x). Similarly, let Bk`
ij = Bk

ij ∩B`
ij

and write bk
ij and bk`

ij for the respective fractions of the disk they define. Then

bij = 1 −
∑

k bk
ij +

∑

k,` bk`
ij . Finally consider the average vector vij from the

center of the disk to the boundary of its intersection with the Voronoi polygon.

Its computation follows the same pattern of inclusion-exclusion over the link of

the edge, vij = 0 −
∑

k vk
ij +

∑

k,` vk`
ij , where vk

ij is the average vectors to the

arc minus the average vector to the line segment in the boundary of Bk
ij , and

similarly vk`
ij is the difference between the two average vectors of Bk`

ij . For further

details refer to [Edelsbrunner and Koehl 2003].

Performance. We discuss the actual performance of AlphaVol. We have com-

puted the weighted surface areas and volumes, as well as their derivatives with

respect to atomic coordinates, of 2,868 proteins varying in size from 17 to 500

residues. These proteins contain between 124 and 4,063 atoms. Computing times

for AlphaVol on an Intel 1600 MHz Pentium IV computer are shown in Figure 5.
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Figure 5. Performance of AlphaVol. The running time (in seconds) required

by AlphaVol to compute the weighted volume and weighted surface area of a

protein, with (x) and without (o) derivative is plotted against the number of

atoms of the protein. The running times are measured on an Intel 1600 MHz

Pentium IV computer, running Linux. AlphaVol is written in Fortran, and was

compiled using ifc, the Intel Fortran compiler for Linux.

As described above, AlphaVol first computes the Delaunay triangulation of

the n input spheres. Although in the worst case this takes quadratic time for

constructing a quadratic number of simplices, for protein data the running time

is typically O(n log n) for constructing O(n) simplices. The time for constructing

the dual complex and measuring the union of balls is linear in the number of

simplices in the Delaunay triangulation and therefore typically in O(n). The

experimentally observed total running time of AlphaVol is compatible with a
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complexity of O(n log n), both with and without derivatives, for up to 4,000

balls. Approximately 45% of the total running time is spent on the Delaunay

triangulation, 10% on the dual complex, and 45% on the weighted area and

volume. Computing the derivatives of both adds another 20%.

Applications. AlphaVol exists as a stand-alone program that can be used to

compute the solvation energy of a biomolecule. We have also inserted AlphaVol

into the molecular dynamics software encad [Levitt et al. 1995] and gromacs

[Lindahl et al. 2001], but it is too early to say anything about the corresponding

results. Recall from Section 3 that AlphaVol accounts for the nonpolar effect of

water on a biomolecule, Wnp, which is only one element of the effective solvation

potential W to be used in simulations with implicit solvent. While there is a

large body of work on computing the other part, Welec [Simonson 2003], there is

not yet any concensus on the model to be used for simulation. We have recently

started a project on this specific problem.

7. Discussion

The Alpha Shape Theory with the two Derivative Theorems provides a fast,

accurate and robust method for computing the interaction of water with a bio-

molecule in an implicit solvent model. To our knowledge, the corresponding

software, AlphaVol, is the only program that deals explicitly with the problem

of discontinuities of the derivatives, which are detected as singularities in the con-

struction of the dual complex [Edelsbrunner and Koehl 2003; Bryant et al. 2004].

We conclude this paper with a short discussion of two immediate applications of

this work.

Macro-molecular machinery. Recent advances in structural biology have

produced an abundance of data on large macro-molecular complexes; see for

example the myosin motors at http://www.proweb.org/myosin/index.html, the

RNA polymerase transcription complexes [Cramer et al. 2001; Bushnell and Ko-

rnberg 2003], and the ribosome complexes [Wimberly et al. 2000; Yusupov et al.

2001; Ban et al. 2002]. Modeling the dynamics of such large systems is as impor-

tant as modeling smaller proteins. It becomes impractical, however, to consider

all atoms of the molecular machinery, and we need to introduce approximations

that consider the system at coarser levels of detail. One possible approach is

to represent the macro-molecular complex with a small number of spheres, sup-

plemented with a model for their interactions that captures the physics of the

underlying atomic model. These interactions will include an internal potential,

and a potential to account for the solvent environment of the system. We expect

the latter to resemble the solvation potential described in Section 2, in which

the software AlphaVol will prove useful.
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Normal modes. Collective motions in which substantial parts move as units

relative to the rest play an important role in defining the function of a biomol-

ecule. Examples include domain motions during catalytic activities (e.g. citrate

synthase [Remington et al. 1982]), as well as the transition from one conforma-

tion to another for proteins that have more than one functionally distinct state.

These processes involve the correlated motion of many atoms and are slower than

local vibrations. They are difficult and costly to detect using classical molecular

dynamics simulations, which motivates the use of normal modes dynamics as an

alternative approach to detecting these collective motions [Go et al. 1983; Levitt

et al. 1983; Brooks and Karplus 1983]. The normal modes are found by assum-

ing that the potential energy can be approximated as a quadratic function of its

variables and solving an eigenvalue problem to give a closed analytical descrip-

tion of the motion. The eigenvalues give the frequencies of the modes and the

eigenvectors give the details of the corresponding motions. At a local minimum,

the quadratic approximation is obtained by a Taylor expansion to the second

order of the total potential energy. Computing normal modes therefore requires

computing the second derivatives of the energy function. However, it is difficult

to define a meaningful energy minimum for a system involving a large biomol-

ecule in the midst of small water molecules since their geometric and physical

properties are so different. We believe that this difficulty can be circumvented

by using an implicit solvent model. Computing the Taylor expansion of the en-

ergy function including an implicit solvent model would then require the second

derivatives of the weighted surface area and/or volume of the biomolecule. We

have recently applied the mathematical tools described in this paper to derive

formulas for both (manuscript in preparation).
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simplicity: a technique to cope with degenerate cases in geometric algorithms”, ACM
Trans. Graphics 9 (1990), 66–104.

[Edelsbrunner and Mücke 1994] H. Edelsbrunner and E. P. Mücke, “Three-dimensional
alpha shapes”, ACM Trans. Graphics 13 (1994), 43–72.

[Edelsbrunner and Shah 1996] H. Edelsbrunner and N. R. Shah, “Incremental topo-
logical flipping works for regular triangulations”, Algorithmica 15 (1996), 223–241.

[Edelsbrunner et al. 1983] H. Edelsbrunner, D. G. Kirkpatrick, and R. Seidel, “On the
shape of a set of points in the plane”, IEEE Trans. Inform. Theory IT-29 (1983),
551–559.

[Edelsbrunner et al. 1998] H. Edelsbrunner, M. A. Facello, and J. Liang, “On the
definition and construction of pockets in macromolecules”, Discrete Appl. Math. 88

(1998), 83–102.

[Eisenberg and McLachlan 1986] D. Eisenberg and A. D. McLachlan, “Solvation energy
in protein folding and binding”, Nature (London) 319 (1986), 199–203.

[Fortune and VanWyk 1996] S. Fortune and C. J. VanWyk, “Static analysis yields
efficient exact integer arithmetic for computational geometry”, ACM Trans. Graph.
15 (1996), 223–248.

[Futamura et al. 2004] N. Futamura, S. Alura, D. Ranjan, and B. Hariharan, “Efficient
parallel algorithms for solvent accessible surface area of proteins”, IEEE Trans.
Parallel Dist. Syst. 13 (2004), 544–555.

[Gavezzotti 1983] A. Gavezzotti, “The calculation of molecular volumes and the use of
volume analysis in the investigation of structured media and of solid-state organic
reactivity”, J. Am. Chem. Soc. 105 (1983), 5220–5225.



THE GEOMETRY OF BIOMOLECULAR SOLVATION 271

[Gear and Østerby 1984] C. W. Gear and O. Østerby, “Solving ordinary differential
equations with discontinuities”, ACM Trans. Math. Softw. 10 (1984), 23–24.

[Gesteland and Atkins 1993] R. F. Gesteland and J. A. Atkins, The RNA world:
the nature of modern RNA suggests a prebiotic RNA world, Cold Spring Harbor
Laboratory Press, Plainview, NY, 1993.

[Gibson and Scheraga 1967] K. D. Gibson and H. A. Scheraga, “Minimization of
polypeptide energy, I: Preliminary structures of bovine pancreatic ribonuclease S-
peptide”, Proc. Natl. Acad. Sci. (USA) 58 (1967), 420–427.

[Gibson and Scheraga 1987] K. D. Gibson and H. A. Scheraga, “Exact calculation of
the volume and surface-area of fused hard-sphere molecules with unequal atomic
radii”, Mol. Phys. 62 (1987), 1247–1265.

[Gilbert 1986] W. Gilbert, “The RNA world”, Nature 319 (1986), 618.

[Go et al. 1983] N. Go, T. Noguti, and T. Nishikawa, “Dynamics of a small globular
protein in terms of low-frequency vibrational modes”, Proc. Natl. Acad. Sci. (USA)
80 (1983), 3696–3700.

[Gogonea and Osawa 1994] V. Gogonea and E. Osawa, “Implementation of solvent
effect in molecular mechanics, 3: The first and second-order analytical derivatives of
excluded volume.”, J. Mol. Struct. (Theochem) 311 (1994), 305–324.

[Gogonea and Osawa 1995] V. Gogonea and E. Osawa, “An improved algorithm for the
analytical computation of solvent-excluded volume: the treatment of singularities in
solvent-accessible surface-area and volume functions”, J. Comp. Chem. 16 (1995),
817–842.

[Grant and Pickup 1995] J. A. Grant and B. T. Pickup, “A Gaussian description of
molecular shape”, J. Phys. Chem. 99 (1995), 3503–3510.

[Hao and Scheraga 1994a] M. H. Hao and H. A. Scheraga, “Monte Carlo Simulation of
a first order transition for protein folding”, J. Phys. Chem. 98 (1994), 4940–4948.

[Hao and Scheraga 1994b] M. H. Hao and H. A. Scheraga, “Statistical thermodynamics
of protein folding – sequence dependence”, J. Phys. Chem. 98 (1994), 9882–9893.

[Hasel et al. 1988] W. Hasel, T. F. Hendrikson, and W. C. Still, “A rapid approximation
to the solvent accessible surface areas of atoms”, Tetrahed. Comp. Method. 1 (1988),
103–106.

[Irisa 1996] M. Irisa, “An elegant algorithm of the analytical calculation for the volume
of fused spheres with different radii”, Comp. Phys. Comm. 98 (1996), 317–338.

[Kaminski et al. 2001] G. A. Kaminski, R. A. Friesner, J. Tirado-Rives, and W. L.
Jorgensen, “Evaluation and reparametrization of the OPLS-AA force field for
proteins via comparison with accurate quantum chemical calculations on peptides”,
J. Phys. Chem. B. 105 (2001), 6474–6487.

[Karplus and McCammon 2002] M. Karplus and J. A. McCammon, “Molecular dy-
namics simulations of biomolecules”, Nature Struct. Biol. 9 (2002), 646–652.

[Kauzmann 1959] W. Kauzmann, “Some factors in the interpretation of protein denat-
uration”, Adv. Protein Chem. 14 (1959), 1–63.

[Kendrew et al. 1960] J. Kendrew, R. Dickerson, B. Strandberg, R. Hart, D. Davies,
and D. Philips, “Structure of myoglobin: a three dimensional Fourier synthesis at 2
angstrom resolution”, Nature 185 (1960), 422–427.



272 HERBERT EDELSBRUNNER AND PATRICE KOEHL

[Koehl and Levitt 1999] P. Koehl and M. Levitt, “A brighter future for protein structure
prediction”, Nature Struct. Biol. 6 (1999), 108–111.

[Koehl and Levitt 2002] P. Koehl and M. Levitt, “Protein topology and stability defines
the space of allowed sequences”, Proc. Natl. Acad. Sci. (USA) 99 (2002), 1280–1285.

[Koltun 1965] W. L. Koltun, “Precision space-filling atomic models”, Biopolymers 3

(1965), 665–679.

[Kratky 1978] K. W. Kratky, “Area of intersection of n equal circular disks”, J. Phys.
A.: Math. Gen. 11 (1978), 1017–1024.

[Kraulis 1991] P. J. Kraulis, “MOLSCRIPT: a program to produce both detailed and
schematic plots of protein structures”, J. Appl. Crystallo. 24 (1991), 946–950.

[Kundrot et al. 1991] C. E. Kundrot, J. W. Ponder, and F. M. Richards, “Algorithms
for calculating excluded volume and its derivatives as a function of molecular-
conformation and their use in energy minimization”, J. Comp. Chem. 12 (1991),
402–409.

[Leach 2001] A. R. Leach, Molecular modelling: principles and applications, 2nd ed.,
Prentice Hall, 2001.

[Lee and Richards 1971] B. Lee and F. M. Richards, “Interpretation of protein
structures: estimation of static accessibility”, J. Mol. Biol. 55 (1971), 379–400.

[Legrand and Merz 1993] S. M. Legrand and K. M. Merz, “Rapid approximation to
molecular-surface area via the use of boolean logic and look-up tables”, J. Comp.
Chem. 14 (1993), 349–352.

[Levitt and Sharon 1988] M. Levitt and R. Sharon, “Accurate simulation of protein
dynamics in solution”, Proc. Natl. Acad. Sci. (USA) 85 (1988), 7557–7561.

[Levitt et al. 1983] M. Levitt, C. Sander, and P. S. Stern, “Protein normal-mode
dynamics: trypsin inhibitor, crambin, ribonuclease and lysozyme”, J. Mol. Biol.
181 (1983), 423–447.

[Levitt et al. 1995] M. Levitt, M. Hirshberg, R. Sharon, and V. Daggett, “Potential-
energy function and parameters for simulations of the molecular-dynamics of pro-
teins and nucleic-acids in solution”, Comp. Phys. Comm. 91 (1995), 215–231.

[Levy et al. 2004] Y. Levy, P. G. Wolynes, and J. N. Onuchic, “Protein topology
determines binding mechanism”, Proc. Natl. Acad. Sci. (USA) 101 (2004), 511–516.

[Liang et al. 1998a] J. Liang, H. Edelsbrunner, P. Fu, P. V. Sudhakar, and S. Subra-
maniam, “Analytical shape computation of macromolecules, I: Molecular area and
volume through alpha shape”, Proteins: Struct. Func. Genet. 33 (1998), 1–17.

[Liang et al. 1998b] J. Liang, H. Edelsbrunner, P. Fu, P. V. Sudhakar, and S.
Subramaniam, “Analytical shape computation of macromolecules, II: Inaccessible
cavities in proteins”, Proteins: Struct. Func. Genet. 33 (1998), 18–29.

[Liang et al. 1998c] J. Liang, H. Edelsbrunner, and C. Woodward, “Anatomy of protein
pockets and cavities: measurement of binding site geometry and implications for
ligand design”, Prot. Sci. 7 (1998), 1884–1897.

[Lindahl et al. 2001] E. Lindahl, B. Hess, and D. van der Spoel, “GROMACS 3.0: a
package for molecular simulation and trajectory analysis”, J. Molec. Mod. 7 (2001),
306–317.



THE GEOMETRY OF BIOMOLECULAR SOLVATION 273

[Liwo et al. 1997a] A. Liwo, S. Oldziej, M. R. Pincus, R. J. Wawak, S. Rackovsky,
and H. A. Scheraga, “A united-residue force field for off-lattice protein-structure
simulations, 1: Functional forms and parameters of long-range side-chain interaction
potentials from protein crystal data”, J. Comp. Chem. 18 (1997), 849–873.

[Liwo et al. 1997b] A. Liwo, M. R. Pincus, R. J. Wawak, S. Rackovsky, S. Oldziej,
and H. A. Scheraga, “A united-residue force field for off-lattice protein-structure
simulations, 2: Parameterization of short-range interactions and determination of
weights of energy terms by Z-score optimization”, J. Comp. Chem. 18 (1997), 874–
887.

[Lum et al. 1999] K. Lum, D. Chandler, and J. D. Weeks, “Hydrophobicity at small
and large length scales”, J. Phys. Chem. B. 103 (1999), 4570–4577.

[MacKerell et al. 1998] A. D. MacKerell, D. Bashford, M. Bellott, R. L. Dunbrack, J. D.
Evanseck, M. J. Field, et al., “All-atom empirical potential for molecular modeling
and dynamics studies of proteins”, J. Phys. Chem. B. 102 (1998), 3586–3616.

[McCammon et al. 1977] J. A. McCammon, B. R. Gelin, and M. Karplus, “Dynamics
of folded proteins”, Nature 267 (1977), 585–590.

[Monod 1973] J. Monod, Le hasard et la nécessité, Le Seuil, Paris, France, 1973.
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