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Abstract: In complex systems with many degrees of freedom such as peptides and proteins, there
exists a huge number of local-minimum-energy states. Conventional simulations in the canonical
ensemble are of littl e use, because they tend to get trapped in states of these energy local minima.
A simulation in generalized ensemble performs a random walk in potential energy space and can
overcome this difficulty. From only one simulation run, one can obtain canonical-ensemble aver-
ages of physical quantities as functions of temperature by the single-histogram and/or multiple-
histogram reweighting techniques. In this article we review uses of the generalized-ensemble
algorithms in biomolecular systems. Three well-known methods, namely, multicanonical algorithm,
simulated tempering, and replica-exchange method, are described first. Both Monte Carlo and
molecular dynamics versions of the algorithms are given. We then present three new generalized-
ensemblealgorithms that combine themeritsof theabovemethods. Theeffectivenessof themethods
for molecular simulations in the protein folding problem is tested with short peptide
systems. © 2001 John Wiley & Sons, Inc. Biopolymers (Pept Sci) 60: 96–123, 2001
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INTRODUCTION

Despite the great advancement of computer technol-
ogy in the past decades, simulations of complex sys-

tems such as spin glasses and biopolymers are still
greatly hampered by the multiple-minima problem. It
is very difficult to obtain accurate canonical distribu-
tions at low temperatures by conventional Monte
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Carlo (MC) and molecular dynamics (MD) methods.
This is because simulations at low temperatures tend
to get trapped in one of a huge number of local-
minimum-energy states. The results thus will depend
strongly on the initial conditions. One way to over-
come this multiple-minima problem is to perform a
simulation in ageneralized ensemblewhere each state
is weighted by a non-Boltzmann probability weight
factor so that a random walk in potential energy space
may be realized. The random walk allows the simu-
lation to escape from any energy barrier and to sample
much wider phase space than by conventional meth-
ods. Monitoring the energy in a single simulation run,
one can obtain not only the global-minimum-energy
state but also canonical ensemble averages as func-
tions of temperature by the single histogram1,2 and/or
multiple-histogram3,4 reweighting techniques (an ex-
tension of the multiple-histogram method is also re-
ferred to asweighted histogram analysis method
(WHAM)4).

One of the most well-known generalized-ensemble
methods is perhaps themulticanonical algorithm
(MUCA)5,6 (for a recent review, see Ref. 7). (The
method is also referred to asentropic sampling8,9 and
adaptive umbrella sampling10 of the potential ener-
gy.11 The mathematical equivalence of multicanonical
algorithm and entropic sampling has been given in
Ref. 12). MUCA and its generalizations have been
applied to spin glass systems (see, e.g., Refs. 13–16).
MUCA was also introduced to the molecular simula-
tion field17 (for previous reviews of generalized-en-
semble approach in the protein folding problem, see,
e.g., Refs. 18–20). Since then MUCA has been ex-
tensively used in many applications in protein and
related systems.21–47 Molecular dynamics version of
MUCA has also been developed11,29,30(see also Refs.
29 and 48 for Langevin dynamics version). Moreover,
multidimensional (or multicomponent) extensions of
MUCA can be found in Refs. 28,32,36.

While a simulation in multicanonical ensemble
performs a free one-dimensional (1D) random walk in
potential energy space, that insimulated tempering
(ST)49,50(the method is also referred to as themethod
of expanded ensemble49) performs a free random walk
in temperature space (for a review, see, e.g., Ref. 51).
This random walk, in turn, induces a random walk in
potential energy space and allows the simulation to
escape from states of energy local minima. ST has
also been applied to protein folding problem.52–55

A third generalized-ensemble algorithm that is re-
lated to MUCA is 1/k-sampling.56 A simulation in
1/k-sampling performs a free random walk in entropy
space, which, in turn, induces a random walk in
potential energy space. The relation among the above

three generalized-ensemble algorithms was discussed
and the effectiveness of the three methods in protein
folding problem was compared.54

The generalized-ensemble method is powerful, but in
the above three methods the probability weight factors
are not a priori known and have to be determined by
iterations of short trial simulations. This process can be
nontrivial and very tedius for complex systems with
many local-minimum-energy states. Therefore, there
have been attempts to accelerate the convergence of
the iterative process for MUCA11,13,28,57–59(see also
Ref. 7).

A new generalized-ensemble algorithm that is
based on the weight factor of Tsallis statistical me-
chanics60 was recently developed with the hope of
overcoming this difficulty,61,62 and the method was
applied to a peptide folding problem.63,64 A similar
but slightly different formulation is given in Ref. 65.
See also Ref. 66 for a combination of Tsallis statistics
with simulated tempering. (Optimization problems
were also addressed by simulated annealing algo-
rithms67 based on the Tsallis weight in Refs. 68–70.
For reviews of molecular simulations based on Tsallis
statistics, see, e.g., Refs. 71–73.) In this generalized
ensemble the weight factor is known, once the value
of the global-minimum energy is given.61 The advan-
tage of this ensemble is that it greatly simplifies the
determination of the weight factor. However, the es-
timation of the global-minimum energy can still be
very difficult.

In the replica-exchange method(REM),74–76 the
difficulty of weight factor determination is greatly
alleviated. (Closely related methods were indepen-
dently developed in Refs. 77–79. REM is also referred
to as multiple Markov chain method80 and parallel
tempering.51 Details of literature about REM and re-
lated algorithms can be found in a recent review).81 In
this method, a number of noninteracting copies (or
replicas) of the original system at different tempera-
tures are simulated independently and simultaneously
by the conventional MC or MD method. Every few
steps, pairs of replicas are exchanged with a specified
transition probability. The weight factor is just the
product of Boltzmann factors, and so it is essentially
known.

REM has already been used in many applications
in protein systems.55,82–87Systems of Lennard-Jones
particles have also been studied by this method in
various ensembles.88–91Moreover, REM was applied
to cluster studies in quantum chemistry field.92 The
details of molecular dynamics algorithm have been
worked out for REM84 (see also Refs. 82 and 93). We
then developed a multidimensional REM, which is
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particularly useful in free energy calculations86 (see
also Refs. 88, 94, 95).

However, REM also has a computational diffi-
culty: As the number of degrees of freedom of the
system increases, the required number of replicas also
greatly increases, whereas only a single replica is
simulated in MUCA or ST. This demands a lot of
computer power for complex systems. Our solution to
this problem is: Use REM for the weight factor de-
terminations of MUCA or ST, which is much simpler
than previous iterative methods of weight determina-
tions, and then perform a long MUCA or ST produc-
tion run. The first example is thereplica-exchange
multicanonical algorithm (REMUCA).96 In RE-
MUCA, a short replica-exchange simulation is per-
formed, and the multicanonical weight factor is de-
termined by the multiple-histogram reweighting tech-
niques.3,4 Another example of such a combination is
the replica-exchange simulated tempering(REST).97

In REST, a short replica-exchange simulation is per-
formed, and the simulated tempering weight factor is
determined by the multiple-histogram reweighting
techniques.3,4

We have introduced a further extension of
REMUCA, which we refer to asmulticanonical replica-
exchange method(MUCAREM).96 In MUCAREM, the
multicanonical weight factor is first determined as in
REMUCA, and then a replica-exchange multicanonical
production simulation is performed with a small number
of replicas.

In this article, we describe the six generalized-
ensemble algorithms mentioned above. Namely, we
first review three familiar methods: MUCA, ST, and
REM. We then present the three new algorithms:
REMUCA, REST, and MUCAREM. The effective-
ness of these methods is tested with short peptide
systems.

GENERALIZED-ENSEMBLE
ALGORITHMS

Multicanonical Algorithm and Simulated
Tempering

Let us consider a system ofN atoms of massmk (k
5 1, . . . , N) with their coordinate vectors and mo-
mentum vectors denoted byq [ { q1, . . . , qN} and p
[ { p1, . . . , pN}, respectively. The HamiltonianH(q,
p) of the system is the sum of the kinetic energyK( p)
and the potential energyE(q):

H~q, p! 5 K~p! 1 E~q! (1)

where

K~p! 5 O
k51

N pk
2

2mk
(2)

In the canonical ensemble at temperatureT each
statex [ (q, p) with the HamiltonianH(q, p) is
weighted by the Boltzmann factor:

WB~x; T! 5 e2bH~q,p! (3)

where the inverse temperatureb is defined byb
5 1/kBT (kB is the Boltzmann constant). The average
kinetic energy at temperatureT is then given by

^K~p!&T 5 KO
k51

N pk
2

2mk
L

T

5
3

2
NkBT (4)

Because the coordinatesq and momentap are
decoupled in Eq. (1), we can suppress the kinetic
energy part and can write the Boltzmann factor as

WB~x; T! 5 WB~E; T! 5 e2bE (5)

The canonical probability distribution of potential en-
ergy PB(E; T) is then given by the product of the
density of statesn(E) and the Boltzmann weight
factor WB(E; T):

PB~E; T! } n~E!WB~E; T! (6)

Since n(E) is a rapidly increasing function and the
Boltzmann factor decreases exponentially, the canon-
ical ensemble yields a bell-shaped distribution that
has a maximum around the average energy at temper-
atureT. The conventional MC or MD simulations at
constant temperature are expected to yieldPB(E; T),
but in practice, it is very difficult to obtain accurate
canonical distributions of complex systems at low
temperatures by conventional simulation methods.
This is because simulations at low temperatures tend
to get trapped in one or a few of local-minimum-
energy states.

In the multicanonical ensemble (MUCA),5,6 on the
other hand, each state is weighted by a non-Boltz-
mann weight factorWmu(E) (which we refer to as the
multicanonical weight factor) so that a uniform en-
ergy distributionPmu(E) is obtained:

Pmu~E! } n~E!Wmu~E! ; constant (7)
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The flat distribution implies that a free random walk
in the potential energy space is realized in this ensem-
ble. This allows the simulation to escape from any
local minimum-energy states and to sample the con-
figurational space much more widely than the con-
ventional canonical MC or MD methods.

From the definition in Eq. (7) the multicanonical
weight factor is inversely proportional to the density
of states, and we can write it as follows:

Wmu~E! ; e2b0Emu~E;T0! 5
1

n~E!
(8)

where we have chosen an arbitrary reference temper-
ature,T0 5 1/kBb0, and themulticanonical potential
energyis defined by

Emu~E; T0! 5 kBT0 ln n~E! 5 T0S~E! (9)

Here,S(E) is the entropy in the microcanonical en-
semble. Since the density of states of the system is
usually unknown, the multicanonical weight factor
has to be determined numerically by iterations of
short preliminary runs5,6 as described in detail below.

A multicanonical Monte Carlo simulation is per-
formed, for instance, with the usual Metropolis crite-
rion98: The transition probability of statex with po-
tential energyE to statex9 with potential energyE9 is
given by

w~x 3 x9! 5 H1, for DEmu # 0,
exp~2b0DEmu!, for DEmu . 0

(10)

where

DEmu ; Emu~E9; T0! 2 Emu~E; T0! (11)

The molecular dynamics algorithm in multicanonical
ensemble also naturally follows from Eq. (8), in
which the regular constant temperature molecular dy-
namics simulation (withT 5 T0) is performed by
solving the following modified Newton equa-
tion11,29,30:

ṗk 5 2
­Emu~E; T0!

­qk
5

­Emu~E; T0!

­E
fk (12)

wherefk is the usual force acting on thekth atom (k
5 1, . . . , N). From Eq. (9) this equation can be
rewritten as

ṗk 5
T0

T~E!
fk (13)

where the following thermodynamic relation gives the
definition of the “effective temperature”T(E):

­S~E!

­E
UE5Ea

5
1

T~Ea!
(14)

with

Ea 5 ^E&T~Ea! (15)

The multicanonical weight factor is usually deter-
mined by iterations of short trial simulations. The
details of this process are described, for instance, in
Refs. 13 and 24. For the first run, a canonical simu-
lation at a sufficiently high temperatureT0 is per-
formed, i.e., we set

H Emu
~1! ~E; T0! 5 E,

Wmu
~1! ~E; T0! 5 WB~E; T0! 5 exp~2b0E!

(16)

We define the maximum energy valueEmax under
which we want to have a flat energy distribution by
the average potential energy at temperatureT0:

Emax 5 ^E&T0 (17)

Above Emax we have the canonical distribution atT
5 T0. In thel th iteration a simulation with the weight
Wmu

(l )(E; T0) 5 exp(2b0Emu
(l )(E; T0)) is performed,

and the histogramN(l )(E) of the potential energy
distributionPmu

(l )(E) is obtained. LetEmin
(l ) be the low-

est-energy value that was obtained throughout the
preceding iterations including the present simulation.
The multicanonical potential energy for the (l 1 1)th
iteration is then given by

Emu
~l11!~E; T0! 5 5

E, for E $ Emax,
Emu

~l ! ~E; T0! 1 kBT0 lnN~l !~E! 2 c~l !, for Emin
~l ! # E , Emax,

­Emu
~l11!~E; T0!

­E uE5Emin
~l ! ~E 2 Emin

~l ! ! 1 Emu
~l11!~Emin

~l ! ; T0!, for E , Emin
~l !

(18)
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where the constantc(l ) is introduced to ensure the
continuity atE 5 Emax and we have

c~l! 5 kBT0 ln N~l !~Emax! (19)

We iterate this process until the obtained energy dis-
tribution becomes reasonably flat, say, of the same
order of magnitude, forE , Emax. When the conver-
gence is reached, we should have thatEmin

(l ) is equal to
the global-minimum potential energy value.

It is also common especially when working in MD
algorithm to use polynomials and other smooth func-
tions to fit the histograms during the iterations.11,25,30

We have shown that the cubic spline functions work
well.96

However, the iterative process can be nontrivial
and very tedius for complex systems, and there have
been attempts to accelerate the convergence of the
iterative process.11,13,28,57–59

After the optimal multicanonical weight factor is
determined, one performs a long multicanonical sim-
ulation once. By monitoring the potential energy
throughout the simulation, one can find the global-
minimum-energy state. Moreover, by using the ob-
tained histogramNmu(E) of the potential energy dis-
tribution Pmu(E) the expectation value of a physical
quantity A at any temperatureT 5 1/kBb is calcu-
lated from

^A&T 5

O
E

A~E!n~E!e2bE

O
E

n~E!e2bE , (20)

where the best estimate of the density of states is
given by the single-histogram reweighting techniques
(see Eq. (7))1,2:

n~E! 5
Nmu~E!

Wmu~E!
(21)

In the numerical work, we want to avoid round-off
errors (and overflows and underflows) as much as
possible. It is usually better to combine exponentials
as follows (see Eq. (8)):

^A&T 5

O
E

A~E!Nmu~E!eb0Emu~E;T0!2bE

O
E

Nmu~E!eb0Emu~E;T0!2bE (22)

We now briefly review the original ST meth-
od.49,50 In this method temperature itself becomes a
dynamical variable, and both the configuration and

the temperature are updated during the simulation
with a weight:

WST~E; T! 5 e2bE1a~T! (23)

where the functiona(T) is chosen so that the proba-
bility distribution of temperature is flat:

PST~T! 5 E dE n~E!WST~E; T!

5 E dE n~E!e2bE1a~T!

5 constant

(24)

Hence, in simulated tempering thetemperatureis
sampled uniformly. A free random walk in tempera-
ture space is realized, which in turn induces a random
walk in potential energy space and allows the simu-
lation to escape from states of energy local minima.

In the numerical work we discretize the tempera-
ture in M different values,Tm(m 5 1, . . . , M).
Without loss of generality, we can order the temper-
ature so thatT1 , T2 , . . . , TM. The lowest
temperatureT1 should be sufficiently low so that the
simulation can explore the global-minimum-energy
region, and the highest temperatureTM should be
sufficiently high so that no trapping in an energy-
local-minimum state occurs. The probability weight
factor in Eq. (23) is now written as

WST~E; Tm! 5 e2bmE1am (25)

wheream 5 a(Tm) (m 5 1, . . . , M). The parame-
tersam are not known a priori and have to be deter-
mined by iterations of short simulations. This process
can be nontrivial and very difficult for complex sys-
tems. Note that from Eqs. (24) and (25) we have

e2am } E dE n~E!e2bmE (26)

The parametersam are therefore “dimensionless”
Helmholtz free energy at temperatureTm (i.e., the
inverse temperaturebm multiplied by the Helmholtz
free energy).

Once the parametersam are determined, and the
initial configuration and the initial temperatureTm are
chosen, a simulated tempering simulation is then re-
alized by alternately performing the following two
steps49,50:

100 Mitsutake, Sugita, and Okamoto



1. A canonical MC or MD simulation at the fixed
temperatureTm is carried out for a certain MC
or MD steps.

2. The temperatureTm is updated to the neighbor-
ing valuesTm61 with the configuration fixed.
The transition probability of this temperature-
updating process is given by the Metropolis
criterion [see Eq. (25)]:

w~Tm 3 Tm61! 5 H1, for D # 0,
exp~2D!, for D . 0

(27)

where
D 5 ~bm61 2 bm! E 2 ~am61 2 am!

(28)

Note that in Step 2 we exchange only pairs of neigh-
boring temperatures in order to secure sufficiently
large acceptance ratio of temperature updates.

As in multicanonical algorithm, the simulated tem-
pering parametersam 5 a(Tm) (m 5 1, . . . , M) are
also determined by iterations of short trial simulations
(see, e.g., Refs. 51, 52, and 54 for details). Here, we
give the one in Ref. 54.

During the trial simulations we keep track of the
temperature distribution as a histogramNm

5 N(Tm)(m 5 1, . . . , M).

1. Start with a short canonical simulation (i.e.,am

5 0) updating only configurations at tempera-
ture Tm 5 TM (we initially set the temperature
label m to M) and calculate the average poten-
tial energy^E&TM

. Here, the histogramNn will
have nonzero entry only forn 5 m 5 M.

2. Calculate new parametersan according to
an

5 Han 2 ln Nn, for m# n # M,
an 2 ^E&Tm

~bm21 2 bm!, for n 5 m2 1,
2`, for n , m2 1

(29)

This weight implies that the temperature will
range betweenTm21 andTM.

3. Start a new simulation, now updating both con-
figurations and temperatures, with weight
WST(E; Tn) 5 exp(2bnE1an) and sample the
distribution of temperaturesTn in the histogram
Nn 5 N(Tn). For T 5 Tm21 calculate the
average potential energy^E&Tm21

.
4. If the histogramNn is approximately flat in the

temperature rangeTm21 # Tn # TM, set m
5 m 2 1. Otherwise, leavem unchanged.

5. Iterate the last three steps until the obtained

temperature distributionNn becomes flat over
the whole temperature range [T1, TM].

After the optimal simulated tempering weight fac-
tor is determined, one performs a long simulated
tempering run once. From the results of this produc-
tion run, one can obtain the canonical ensemble av-
erage of a physical quantityA as a function of tem-
perature from Eq. (20), where the density of states is
given by the multiple-histogram reweighting tech-
niques3,4 as follows. LetNm(E) and nm be respec-
tively the potential-energy histogram and the total
number of samples obtained at temperatureTm 5 1/
kBbm(m 5 1, . . . , M). The best estimate of the
density of states is then given by3,4

n~E! 5

O
m51

M

gm
21 Nm~E!

O
m51

M

gm
21 nmefm2bmE

(30)

where

e2fm 5 O
E

n~E!e2bmE (31)

Here, gm 5 1 1 2tm, and tm is the integrated
autocorrelation time at temperatureTm. Note that Eqs.
(30) and (31) are solved self-consistently by itera-
tion3,4 to obtain the dimensionless Helmholtz free
energyfm [and the density of statesn(E)]. We remark
that in the numerical work, it is often more stable to
use the following equations instead of Eqs. (30) and
(31):

PB~E; T! 5 n~E!e2bE 5

O
m51

M

gm
21 Nm~E!

O
m51

M

gm
21 nmefm2~bm2b!E

(32)

where

e2fm 5 O
E

PB~E; Tm! (33)

The equations are solved iteratively as follows. We
can set all thefm(m 5 1, . . . , M) to, e.g., zero
initially. We then use Eq. (32) to obtainPB(E; Tm)(m
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5 1, . . . , M), which are substituted into Eq. (33) to
obtain next values offm, and so on.

Replica-Exchange Method

The REM74–76 was developed as an extension of
simulated tempering74 (thus it is also referred to as
parallel tempering51 (see, e.g., Ref. 84 for a detailed
description of the algorithm). The system for REM
consists ofM noninteractingcopies (or, replicas) of
the original system in the canonical ensemble atM
different temperaturesTm (m 5 1, . . . , M). We
arrange the replicas so that there is always exactly one
replica at each temperature. Then there is a one-to-one
correspondence between replicas and temperatures;
the labeli (i 5 1, . . . , M) for replicas is a permu-
tation of the labelm (m 5 1, . . . , M) for tempera-
tures, and vice versa:

H i 5 i ~m! ; f~m!,
m 5 m~i ! ; f21~i ! (34)

wheref(m) is a permutation function ofm andf21(i )
is its inverse.

Let X 5 { x1
[ i (1)], . . . , xM

[ i (M)]} 5 { xm(1)
[1] , . . . ,

xm(M)
[M] } stand for a “state” in this generalized ensem-

ble. The stateX is specified by theM sets of coordi-
natesq[ i ] and momentap[ i ] of N atoms in replicai at
temperatureTm:

xm
@i# ; ~q@i#, p@i#!m (35)

Because the replicas are noninteracting, the weight
factor for the stateX in this generalized ensemble is
given by the product of Boltzmann factors for each
replica (or at each temperature):

WREM~X! 5 exp$2O
i51

M

bm~i !H~q@i #, p@i #!%

5 exp$2 O
m51

M

bmH~q@i ~m!#, p@i ~m!#!% (36)

wherei (m) andm(i ) are the permutation functions in
Eq. (34).

We now consider exchanging a pair of replicas in
the generalized ensemble. Suppose we exchange rep-
licas i and j , which are at temperaturesTm and Tn,
respectively:

X 5 $ . . . , xm
@i#, . . . , xn

@j#, . . . % 3

X9 5 $ . . . , xm
@j#9, . . . , xn

@i#9, . . . % (37)

Here, i , j , m, and n are related by the permutation
functions in Eq. (34), and the exchange of replicas
introduces a new permutation functionf9:

H i 5 f~m! 3 j 5 f9~m!,
j 5 f~n! 3 i 5 f9~n! (38)

The exchange of replicas can be written in more
detail as

Hxm
@i# ; ~q@i#, p@i#!m 3 xm

@j#9 ; ~q@j#, p@j#9!m,
xn

@j# ; ~q@j#, p@j#!n 3 xn
@i#9 ; ~q@i#, p@i#9!n

(39)

where the definitions forp[ i ] 9 andp[ j ] 9 will be given
below. We remark that this process is equivalent to
exchanging a pair of temperaturesTm andTn for the
corresponding replicasi and j as follows:

Hxm
@i# ; ~q@i#, p@i#!m 3 xn

@i#9 ; ~q@i#, p@i#9!n,
xn

@j# ; ~q@j#, p@j#!n 3 xm
@j#9 ; ~q@j#, p@j#9!m

(40)

In the original implementation of the REM,74–76

Monte Carlo algorithm was used, and only the coor-
dinatesq [and the potential energy functionE(q)] had
to be taken into account. In molecular dynamics al-
gorithm, on the other hand, we also have to deal with
the momentap. We proposed the following momen-
tum assignment in Eq. (39) (and in Eq. (40))84:

5p@i#9 ; ÎTn

Tm
p@i#,

p@j#9 ; ÎTm

Tn
p@j#

(41)

which we believe is the simplest and the most natural.
This assignment means that we just rescale uniformly
the velocities of all the atoms in the replicas by the
square root of the ratio of the two temperatures so that
the temperature condition in Eq. (4) may be satisfied.

In order for this exchange process to converge
towards an equilibrium distribution, it is sufficient to
impose the detailed balance condition on the transi-
tion probabilityw(X 3 X9):

WREM~X!w~X 3 X9! 5 WREM~X9!w~X9 3 X!

(42)

From Eqs. (1), (2), (36), (41), and (42), we have
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w~X 3 X9!

w~X9 3 X!
5 exp$2bm@K~p@j #9! 1 E~q@j #!#

2 bn@K~p@i #9! 1 E~q@i #!# 1 bm@K~p@i #! 1 E~q@i #!#

1 bn@K~p@j #! 1 E~q@j #!#% (43)

5 expH2bm

Tm

Tn
K~p@j #! 2 bn

Tn

Tm
K~p@i #!

1 bmK~p@i #! 1 bnK~p@j #! 2 bm@E~q@j #! 2 E~q@i #!#

2 bn@E~q@i #! 2 E~q@j #!#J 5 exp~2D!

where

D ; ~bn 2 bm!~E~q@i#! 2 E~q@j#!! (44)

and i , j , m, and n are related by the permutation
functions (in Eq. (34)) before the exchange:

H i 5 f~m!,
j 5 f~n! (45)

This can be satisfied, for instance, by the usual Me-
tropolis criterion96:

w~X 3 X9! ; w~xm
@i#uxn

@j#!

5 H1, for D # 0,
exp~2D!, for D . 0

(46)

where in the second expression [i.e.,w( xm
[ i ] uxn

[ j ])] we
explicitly wrote the pair of replicas (and temperatures)
to be exchanged. Note that this is exactly the same
criterion that was originally derived for Monte Carlo
algorithm.74–76

Without loss of generality we can again assumeT1

, T2 , . . . , TM. A simulation of the REM74–76is
then realized by alternately performing the following
two steps:

1. Each replica in canonical ensemble of the fixed
temperature is simulatedsimultaneouslyandin-
dependentlyfor a certain MC or MD steps.

2. A pair of replicas at neighboring temperatures,
sayxm

[ i ] andxm11
[ j ] , are exchanged with the prob-

ability w( xm
[ i ] uxm11

[ j ] ) in Eq. (46).

Note that in step 2 we exchange only pairs of replicas
corresponding to neighboring temperatures, because
the acceptance ratio of the exchange process de-
creases exponentially with the difference of the two
b’s [see Eqs. (44) and (46)]. Note also that whenever

a replica exchange is accepted in step 2, the permu-
tation functions in Eq. (34) are updated.

The REM simulation is particularly suitable for
parallel computers. Because one can minimize the
amount of information exchanged among nodes, it is
best to assign each replica to each node (exchanging
pairs of temperature values among nodes is much
faster than exchanging coordinates and momenta).
This means that we keep track of the permutation
functionm(i ; t) 5 f21(i ; t) in Eq. (34) as a function
of MC or MD step t during the simulation. After
parallel canonical MC or MD simulations for a certain
steps (step 1),M/ 2 pairs of replicas corresponding to
neighboring temperatures are simulateneously ex-
changed (step 2), and the pairing is alternated between
the two possible choices, i.e., (T1, T2), (T3, T4),. . .
and (T2, T3), (T4, T5),. . . .

The major advantage of REM over other general-
ized-ensemble methods such as multicanonical algo-
rithm5,6 and simulated tempering49,50 lies in the fact
that the weight factor is a priori known [see Eq. (36)],
while in the latter algorithms the determination of the
weight factors can be very tedius and time-consum-
ing. A random walk in “temperature space” is realized
for each replica, which in turn induces a random walk
in potential energy space. This alleviates the problem
of getting trapped in states of energy local minima. In
REM, however, the number of required replicas in-
creases as the system sizeN increases (according to
=N).74 This demands a lot of computer power for
complex systems.

Replica-Exchange Multicanonical
Algorithm and Replica-Exchange
Simulated Tempering

REMUCA96 overcomes both the difficulties of
MUCA (the multicanonical weight factor determina-
tion is nontrivial) and REM (a lot of replicas, or
computation time, is required). In REMUCA we first
perform a short REM simulation (withM replicas) to
determine the multicanonical weight factor and then
perform with this weight factor a regular multicanoni-
cal simulation with high statistics. The first step is
accomplished by the multiple-histogram reweighting
techniques.3,4 Let Nm(E) andnm be respectively the
potential-energy histogram and the total number of
samples obtained at temperatureTm 5 1/kBbm of the
REM run. The density of statesn(E) is then given by
solving Eqs. (30) and (31) self-consistently by itera-
tion.3,4

Once the estimate of the density of states is ob-
tained, the multicanonical weight factor can be di-
rectly determined from Eq. (8) [see also Eq. (9)].
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Actually, the multicanonical potential energy,Emu(E;
T0), thus determined is only reliable in the following
range:

E1 # E # EM (47)

where

HE1 5 ^E&T1,
EM 5 ^E&TM

(48)

and T1 and TM are respectively the lowest and the
highest temperatures used in the REM run. Outside
this range we extrapolate the multicanonical potential
energy linearly:

emu
$0%~E! ; 5

­Emu~E; T0!

­E uE5E1~E 2 E1! 1 Emu~E1; T0!, for E , E1,

Emu~E; T0!, for E1 # E # EM,
­Emu~E; T0!

­E uE5EM
~E 2 EM! 1 Emu~EM; T0!, for E . EM

(49)

The multicanonical MC and MD runs are then per-
formed with the Metropolis criterion of Eq. (10) and
with the Newton equation in Eq. (12), respectively, in
which emu

{0} (E) in Eq. (49) is substituted intoEmu(E;
T0). We expect to obtain a flat potential energy dis-

tribution in the range of Eq. (47). Finally, the results
are analyzed by the single-histogram reweighting
techniques as described in Eq. (21) [and Eq. (20)].

Some remarks are now in order. From Eqs. (9),
(14), (15), and (48), Eq. (49) becomes

emu
$0%~E! 5 5

T0

T1
~E 2 E1! 1 T0S~E1! 5

T0

T1
E 1 constant, for E , E1 ; ^E&T1,

T0S~E!, for E1 # E # EM,
T0

TM
~E 2 EM! 1 T0S~EM! 5

T0

TM
E 1 constant, for E . EM ; ^E&TM

(50)

The Newton equation in Eq. (12) is then written as
(see Eqs. (13), (14), and (15))

ṗk 5 5
T0

T1
fk, for E , E1,

T0

T~E!
fk, for E1 # E # EM,

T0

TM
fk, for E . EM

(51)

Because only the product of inverse temperatureb
and potential energyE enters in the Boltzmann factor
[see Eq. (5)], a rescaling of the potential energy (or
force) by a constant, saya, can be considered as the
rescaling of the temperature bya21.29,93 Hence, our

choice ofemu
{0} (E) in Eq. (49) results in a canonical

simulation atT 5 T1 for E , E1, a multicanonical
simulation for E1 # E # EM, and a canonical
simulation atT 5 TM for E . EM. Note also that the
above arguments are independent of the value ofT0,
and we will get the same results, regardless of its
value.

Finally, although we did not find any difficulty in
the case of protein systems that we studied, a single
REM run in general may not be able to give an
accurate estimate of the density of states (like in the
case of a strong first-order phase transition74). In such
a case we can still greatly simplify the process of the
multicanonical weight factor determination by com-
bining the present method with the previous iterative
methods.11,13,24,28,57–59
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We finally present the new method, which is
REST.97 In this method, just as in REMUCA, we first
perform a short REM simulation (withM replicas) to
determine the simulated tempering weight factor and
then perform with this weight factor a regular ST
simulation with high statistics. The first step is ac-
complished by the multiple-histogram reweighting
techniques,3,4 which give the dimensionless Helm-
holtz free energyfm [see Eqs. (30) and (31)].

Once the estimate of the dimensionless Helmholtz
free energyfm are obtained, the simulated tempering
weight factor can be directly determined by using Eq.
(25) where we setam 5 fm [compare Eq. (26) with
Eq. (31)]. A long simulated tempering run is then
performed with this weight factor. LetNm(E) andnm

be respectively the potential-energy histogram and the
total number of samples obtained at temperatureTm

5 1/kBbm from this simulated tempering run. The
multiple-histogram reweighting techniques of Eqs.
(30) and (31) can be used again to obtain the best
estimate of the density of statesn(E). The expectation
value of a physical quantityA at any temperatureT
(5 1/kBb) is then calculated from Eq. (20).

The formulations of REMUCA and REST are sim-
ple and straightforward, but the numerical improve-
ment is great, because the weight factor determination
for MUCA and ST becomes very difficult by the usual
iterative processes for complex systems.

Multicanonical Replica-Exchange
Method

In the previous subsection we presented a new gen-
eralized-ensemble algorithm, REMUCA, that com-
bines the merits of replica-exchange method and mul-
ticanonical algorithm. In REMUCA a short REM
simulation with M replicas are first performed, and
the results are used to determine the multicanonical
weight factor; then a regular multicanonical produc-
tion run with this weight is performed. The number of
replicasM that is required in the first step should be
set minimally as long as a random walk between the
lowest-energy region and the high-energy region is

realized. This number can still be very large for com-
plex systems. This is why the (multicanonical) pro-
duction run in REMUCA is performed with a “single
replica.” While multicanonical simulations are usu-
ally based on local updates, a replica-exchange pro-
cess can be considered to be a global update, and
global updates enhance the sampling further. Here, we
present a further modification of REMUCA which is
MUCAREM.96 In MUCAREM the final production
run is not a regular multicanonical simulation but a
replica-exchange simulation with a few replicas, say
} replicas, in the multicanonical ensemble. (We re-
mark that replica-exchange simulations based on the
generalized ensemble with Tsallis weights were intro-
duced in Ref. 82.) Because multicanonical simula-
tions cover much wider energy ranges than regular
canonical simulations, the number of required replicas
for the production run of MUCAREM is much less
than that for the regular REM (} ! M), and we can
keep the merits of REMUCA (and improve the sam-
pling further).

The details of MUCAREM are as follows. As in
REMUCA, we first perform a short REM simulation
with M replicas withM different temperatures (we
order them asT1 , T2 , . . . , TM) and obtain the
best estimate of the density of statesn(E) in the whole
energy range of interest [see Eq. (47)] by the multiple-
histogram reweighting techniques of Eqs. (30) and
(31). We then choose a number} (} ! M) and
assign } pairs of temperatures (TL

{ m} , TH
{ m} ) (m

5 1, . . . , }). Here, we assume thatTL
{ m} , TH

{ m}

and arrange the temperatures so that the neighboring
regions covered by the pairs have sufficient overlaps.
In particular, we setTL

{1} 5 T1 andTH
{ }} 5 TM. We

then define the following quantities:

HEL
$m% 5 ^E&TL

$m%,

EH
$m% 5 ^E&TH

$m%, ~m5 1, . . . ,}!
(52)

We also choose} (arbitrary) temperaturesTm (m
5 1, . . . , }) and assign the following multicanoni-
cal potential energies:

emu
$m%~E! 5 5

­Emu~E; Tm!

­E uE5EL
$m% ~E 2 EL

$m%! 1 Emu~EL
$m%; Tm!, for E , EL

$m%,

Emu ~E; Tm!, for EL
$m% # E # EH

$m%,
­Emu(E; Tm)

­E uE5EH
$m% ~E 2 EH

$m%! 1 Emu~EH
$m%; Tm!, for E . EH

$m%

(53)
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whereEmu(E; T) is the multicanonical potential en-
ergy that was determined for the whole energy range
of Eq. (47). As remarked around Eq. (50), our choice
of emu

{ m} (E) in Eq. (53) results in a canonical simula-
tion at T 5 TL

{ m} for E , EL
{ m} , a multicanonical

simulation for EL
{ m} # E #EH

{ m} , and a canonical
simulation atT 5 TH

{ m} for E . EH
{ m} .

The production run of MUCAREM is a replica-
exchange simulation with} replicas with} different
temperaturesTm and multicanonical potential ener-
gies emu

{ m} (E). By following the same derivation that
led to the original REM, we have the following tran-
sition probability of replica exchange of neighboring
temperatures [see Eqs. (44) and (46)]:

w~xm
@i#uxm11

@j# ! 5 H1, for D # 0,
exp~2D!, for D . 0 (54)

where

D 5 bm11$emu
$m11%~E~q@i #!! 2 emu

$m11%~E~q@j #!!%

2 bm$emu
$m%~E~q@i #!! 2 emu

$m%~E~q@j #!!%.
(55)

Note that we need to newly evaluate the multi-
canonical potential energy,emu

{ m} (E(q[ j])) and
emu

{ m11} (E(q[ i ])), becauseemu
{ m} (E) andemu

{ n} (E) are, in
general, different functions form Þ n. We remark
that the same additional evaluation of the potential
energy is necessary for the multidimensional replica-
exchange method.86

For obtaining the canonical distributions, the mul-
tiple-histogram reweighting techniques3,4 are again
used. LetNm(E) andnm be respectively the potential-
energy histogram and the total number of samples
obtained atTm with the multicanonical potential en-
ergy emu

{ m} (E) (m 5 1, . . . , }). The expectation
value of a physical quantityA at any temperatureT
5 1/kBb is then obtained from Eq. (20), where the
best estimate of the density of states is given by
solving the multiple-histogram reweighting equations,
which now read

n~E! 5

¥
m51

}

gm
21 Nm~E!

¥
m51

}

gm
21 nmefm2bmemu

$m%~E!

(56)

and

e2fm 5 O
E

n~E!e2bmemu
$m%~E! (57)

EXAMPLES OF SIMULATION RESULTS

We now present some examples of the simulation
results by the algorithms described in the previous
section. A few short peptide systems were considered.

For Monte Carlo simulations, the potential energy
parameters were taken from ECEPP/2.99–101The gen-
eralized-ensemble algorithms were implemented in
the computer code KONF90102,103for the actual sim-
ulations. Besides gas phase simulations, various sol-
vation models have been incorporated. The simplest
one is the sigmoidal, distance-dependent dielectric
function.104,105The explicit form of the function we
used is given in Ref. 106, which is a slight modifica-
tion of the one in Ref. 107. A second (and more
accurate) model that represents solvent contributions
is the term proportional to the solvent-accessible sur-
face area of solute molecule. The parameters we used
are those of Ref. 108. For the calculation of solvent-
accessible surface area, we used the computer code
NSOL,109 which is based on the code NSC.110 The
third (and most rigorous) method that represents sol-
vent effects is based on the reference interaction site
model (RISM).111–113The model of water molecule
that we adopted is the SPC/E model.114 A robust and
fast algorithm for solving RISM equations was re-
cently developed,115,116 which we employed in our
calculations.47,117,118

For molecular dynamics simulations, the force-
field parameters were taken from the all-atom ver-
sions of AMBER.119–121The computer code devel-
oped in Refs. 122, 123, which is based on PRESTO,124

was used. The unit time step was set to 0.5 fs. The
temperature during the canonical MD simulations was
controlled by the constraint method.125,126 Besides
gas phase simulations, we have also performed MD
simulations with explicit water molecules of the
TIP3P model.127

As described in detail in the previous section, in
generalized-ensemble simulations and subsequent
analyses of the data, potential energy distributions
have to be taken as histograms. For the bin size of
these histograms, we used the values ranging from 0.5
to 2 kcal/mol, depending on the system studied.

We first illustrate how effectively generalized-en-
semble simulations can sample the configurational
space compared to the conventional simulations in the
canonical ensemble. It is known by experiments that
the system of a 17-residue peptide fragment from
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ribonuclease T1 tends to forma-helical conforma-
tions.128 We have performed both a canonical MC
simulation of this peptide at a low temperature (T
5 200 K) and a multicanonical MC simulation.129 In
Figure 1 we show the time series of potential energy
from these simulations.

We see that the canonical simulation thermalizes
very slowly. On the other hand, the MUCA simulation
indeed performed a random walk in potential energy
space covering a very wide energy range. Four con-
formations chosen during this period (from 120,000
MC sweeps to 300,000 MC sweeps) are shown in

FIGURE 1 Time series (from 120,000 MC sweeps to 300,000 MC sweeps) of potential energy of
the peptide fragment of ribonuclease T1 from (a) a conventional canonical MC simulation atT
5 200 K and (b) a multicanonical MC simulation.

FIGURE 2 Typical snapshots from the canonical MC simulation of Figure 1(a). The figures were
created with Molscript130 and Raster3D.131,132
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Figure 2 for the canonical simulation and in Figure 3
for the MUCA simulation. We see that the MUCA
simulation samples much wider conformational space
than the conventional canonical simulation.

The next examples of the systems that we studied
by multicanonical MC simulations are homo-oli-
gomer systems. We studied the helix-forming tenden-
cies of three amino acid homo-oligomers of length 10
in gas phase23,24and in aqueous solution (the solvent
effects are represented by the term that is proportional
to solvent-accessible surface area).45 Three character-
istic amino acids, alanine (helix former), valine (helix
indifferent), and glycine (helix breaker) were consid-
ered. In Figure 4 the lowest-energy conformations
obtained both in gas phase and in aqueous solution by
MUCA simulations are shown.45 The lowest-energy
conformations of (Ala)10 [Figures 4(a) and 4(b)] have
six intrachain backbone hydrogen bonds that charac-
terize thea-helix and are indeed completely helical.
Those of (Val)10 [Figures 4(c) and 4(d)] are also in
almost ideal helix state (from residue 2 to residue 9 in
gas phase and from residue 2 to residue 8 in aqueous
solution). On the other hand, those of (Gly)10 [Figures
4(e) and 4(f)] are not helical and rather round.

We calculated the average values of the total po-
tential energy and its component terms of (Ala)10 as a

function of temperature both in gas phase and in
aqueous solution.45 The results are shown in Figure 5.
For homo-alanine in gas phase, all the conformational
energy terms increase monotonically as temperature
increases. The changes of each component terms are
very small except for the Lennard–Jones termEv,
indicating thatEv plays an important role in the fold-
ing of homo-alanine.24

In aqueous solution the overall behaviors of the
conformational energy terms are very similar to those
in gas phase. The solvation term, on the other hand,
decreases monotonically as temperature increases.
These results imply that the solvation term favors
random-coil conformations, while the conformational
terms favor helical conformations.

The rapid changes (decrease for the solvation term
and increase for the rest of the terms) of all the
average values occur at the same temperature (around
at 420 K in gas phase and 340 K in solvent). We thus
calculated the specific heat for (Ala)10 as a function of
temperature. The specific heat here is defined by the
following equation:

C~T! 5 b2
^Etot

2 &T 2 ^Etot&T
2

N
(58)

FIGURE 3 Typical snapshots from the multicanonical MC simulation of Figure 1(b). The figures
were created with Molscript130 and Raster3D.131,132
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whereN(510) is the number of residues in the oli-
gomer. In Figure 6 we show the results. We observe
sharp peaks in the specific heat for both environment.
The temperatures at the peak, helix-coil transition
temperatures, areTc ' 420 K and 340 K in gas phase
and in aqueous solution, respectively.

We calculated the average number of helical resi-
dues^n&T in a conformation as a function of temper-
ature. In Figure 7 we show this quantity as a function
of temperature for the three homo-oligomers in aque-
ous solution. The average helicity tends to decrease
monotonically as the temperature increases because of
the increased thermal fluctuations.

At T 5 200 K, ^n&T for homo-alanine is 8. If we
neglect the terminal residues, in whicha-helix tends
to be frayed,n 5 8 corresponds to the maximal
helicity, and the conformation can be considered com-
pletely helical. The homo-alanine is thus in an ideal
helical structure atT 5 200 K. Around the room

temperature, the homo-alanine is still substantially
helical ('70% helicity). This is consistent with the
experimental fact that alanine is a strong helix former.
We observe that̂n&T is 5 (50% helicity) at the tran-
sition temperature obtained from the peak in specific
heat (around 340 K). This implies that the peak in
specific heat indeed implies a helix-coil transition
between an ideal helix and a random coil.

The next example is a penta peptide, Met-enkepha-
lin, whose amino-acid sequence is: Tyr–Gly–Gly–
Phe–Met. Since this is one of the simplest peptides
with biological functions, it served as a bench mark
system for many simulations.

Here, we present the latest results of a multicanoni-
cal MC simulation of Met-enkephalin in gas phase.41

The conformations were classified into six groups of
similar structures according to their intrachain hydro-
gen bonds. In Figure 8 we show the lowest-energy
conformations in each group identified by the MUCA

FIGURE 4 The lowest-energy conformations of (Ala)10 [(a) and (b)], (Val)10 [(c) and (d)], and
(Gly)10 [(e) and (f)] obtained from the multicanonical MC simulations in gas phase and in aqueous
solution, respectively. The figures were created with Molscript130 and Raster3D.131,132
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simulation. The lowest-energy conformation of group
C25 [Figure 8(a)] has two hydrogen bonds, connect-
ing residues 2 and 5, and forms a type II9 b-turn. The
ECEPP/2 energy of the conformation is212.2 kcal/
mol, and this conformation corresponds to the global-
minimum-energy state of Met-enkephalin in gas
phase. The conformation is essentially identical with
those found by others.134,135The lowest-energy con-

formation of group C14 [Figure 8(b)] has two hydro-
gen bonds, connecting residues 1 and 4, and forms a
type II b-turn. The energy is211.1 kcal/mol, and this
conformation corresponds to the second-lowest-
energy state. Other groups correspond to high-energy
states.

We now study the distributions of conformations
in these groups as a function of temperature. The

FIGURE 5 Average of the total potential energyEtot and averages of its component terms,
electrostatic energyEc; hydrogen-bond energyEh, Lennard–Jones energyEv, torsion energyEt, and
solvation free energyEsol (only for the case in aqueous solution) for homo-alanine as a function of
temperatureT (a) in gas phase and (b) in aqueous solution. The values for each case were calculated
from one multicanonical production run of 1,000,000 MC sweeps by the single-histogram reweight-
ing techniques.

FIGURE 6 Specific heatC as a function of temperatureT for (Ala)10 in gas phase and in aqueous
solution. The values for each case were calculated from one multicanonical production run of
1,000,000 MC sweeps by the single-histogram reweighting techniques.
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results are shown in Figure 9. As can be seen in the
figure, group C25 is dominant at low temperatures.
Conformations of group C14 start to appear fromT
' 100 K. At T ' 300 K, the distributions of these
two groups, C25 and C14, balance ('25% each) and
constitute the main groups. AboveT ' 300 K, the
contributions of other groups become non-negligible
(those of group C24 and group C13 are about 10 and
8%, respectively, atT 5 400 K). Note that the
distribution of conformations that do not belong to
any of the six groups monotonically increases as the
temperature is raised. This is because random-coil
conformations without any intrachain hydrogen bonds
are favored at high temperatures.

The same peptide in gas phase was studied by the
replica-exchange MD simulation.84 We made an MD
simulation of 23 106 time steps (or, 1.0 ns) for each
replica, starting from an extended conformation. We
used the following eight temperatures: 700, 585, 489,
409, 342, 286, 239, and 200 K, which are distributed
exponentially, following the annealing schedule of
simulated annealing simulations.103 As is shown be-
low, this choice already gave an optimal temperature
distribution. The replica exchange was tried every 10
fs, and the data were stored just before the replica
exchange for later analyses.

As for expectation values of physical quantities at
various temperatures, we used the multiple-histogram
reweighting techniques of Eqs. (30) and (31). We
remark that for biomolecular systems the integrated

FIGURE 7 Average helicitŷ n&T as a function of temperatureT for (Ala)10, (Val)10, and (Gly)10

in aqueous solution. The values for each case were calculated from one multicanonical production
run of 1,000,000 MC sweeps by the single-histogram reweighting techniques.

FIGURE 8 The lowest-energy conformations of Met-
enkephalin in each group obtained by the multicanonical
MC simulation of 1,000,000 MC sweeps. These conformations
correspond to groups (a) C25, (b) C14, (c) C24, (d) C13, (e)
C15, and (f) C35. The figures were created with RasMol.133
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autocorrelation timestm in the reweighting formulae
[see Eq. (30)] can safely be set to be a constant,4 and
we do so throughout the analyses in this section.

For an optimal performance of REM simulations
the acceptance ratios of replica exchange should be
sufficiently uniform and large (say,.10%). In Table
I we list these quantities. The values are indeed uni-
form (all about 15% of acceptance probability) and
large enough (more than 10%).

The results in Table I imply that one should observe
a free random walk in temperature space. The results for
one of the replicas are shown in Figure 10(a). We do
observe a random walk in temperature space between
the lowest and highest temperatures. In Figure 10(b) the
corresponding time series of the total potential energy is
shown. We see that a random walk in potential energy
space between low and high energies is realized. We
remark that the potential energy here is that of AMBER
in Ref. 119. Note that there is a strong correlation be-
tween the behaviors in Figures 10(a) and 10(b).

In Figure 11 the canonical probability distributions
obtained at the chosen eight temperatures from the
replica-exchange simulation are shown. We see that

FIGURE 9 The distributions of each group of similar structures of Met-enkephalin in gas phase
as a function of temperature.

Table I Acceptance Ratios of Replica Exchange
Corresponding to Pairs of Neighboring Temperatures

Pair of Temperatures (K) Acceptance Ratio

2007 239 0.160
2397 286 0.149
2867 342 0.143
3427 409 0.139
4097 489 0.142
4897 585 0.146
5857 700 0.146

FIGURE 10 Time series of (a) temperature exchange and
(b) the total potential energy for one of the replicas from a
replica-exchange MD simulation of Met-enkephalin in gas
phase.
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there are enough overlaps between all pairs of distribu-
tions, indicating that there will be sufficient numbers of
replica exchanges between pairs of replicas (see Table I).

We further compare the results of the replica-
exchange simulation with those of a single canonical
MD simulation (of 1 ns) at the corresponding temper-
atures. In Figure 12 we compare the distributions of a
pair of dihedral angles (f, c) of Gly-2 at two extreme
temperatures (T 5 200 and 700 K). While the results
at T 5 200 K from the regular canonical simulation
are localized with only one dominant peak, those from
the replica-exchange simulation have several peaks
[compare Figures 12(a) and 12(b)]. Hence, the repli-
ca-exchange run samples much broader configura-
tional space than the conventional canonical run at
low temperatures. The results atT 5 700 K [Figures
12(c) and 12(d)], on the other hand, are similar, implying
that a regular canonical simulation can give accurate
thermodynamic quantities at high temperatures.

In Figure 13 we show the average total potential
energy as a function of temperature. As expected from
the results of Figure 12, we observe that the canonical
simulations at low temperatures got trapped in states
of energy local minima, resulting in the discrepancies
in average values between the results from the canon-
ical simulations and those from the replica-exchange
simulation.

FIGURE 11 The canonical probability distributions of
the total potential energy of Met-enkephalin in gas phase
obtained from the replica-exchange MD simulation at the
eight temperatures. The distributions correspond to the fol-
lowing temperatures (from left to right): 200, 239, 286, 342,
409, 489, 585, and 700 K.

FIGURE 12 Distributions of a pair of dihedral angles (f, c) of Gly-2 for (a) T 5 200 K from
a regular canonical MD simulation, (b)T 5 200 K from the replica-exchange MD simulation, (c)
T 5 700 K from a regular canonical MD simulation, and (d)T 5 700 K from the replica-exchange
MD simulation.
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We now present the results of MD simulations
based on replica-exchange multicanonical algorithm
and multicanonical replica-exchange method.96 Met-
enkephalin in gas phase was studied again. The po-
tential energy is, however, that of AMBER in Ref.
120 instead of Ref. 119. In Table II we summarize the
parameters of the simulations that were performed. As
discussed in the previous section, REMUCA con-
sists of two simulations: a short REM simulation
(from which the density of states of the system, or
the multicanonical weight factor, is determined)
and a subsequent production run of MUCA simu-
lation. The former simulation is referred to as
REM1 and the latter as MUCA1 in Table II. A
production run of MUCAREM simulation is re-
ferred to as MUCAREM1 in Table II, and it uses
the same density of states that was obtained from
REM1. Finally, a production run of the original
REM simulation was also performed for compari-
son and it is referred to as REM2 in Table II. The
total simulation time for the three production runs
(REM2, MUCA1, and MUCAREM1) was all set
equal (i.e., 5 ns).

After the simulation of REM1 is finished, we ob-
tained the density of states,n(E), by the multiple-

histogram reweighting techniques of Eqs. (30) and
(31). The density of states will give the average values
of the potential energy from Eq. (20), and we found

HE1 5 ^E&T1 5 230 kcal/mol,
EM 5 ^E&TM

5 195 kcal/mol (59)

Then our estimate of the density of states is reliable in
the rangeE1 # E # EM. The multicanonical poten-
tial energyemu

{0} (E) was thus determined for the three
energy regions (E , E1, E1 # E # EM, and E
. EM) from Eq. (49). Namely, the multicanonical
potential energy,Emu(E; T0), in Eq. (9) and its de-
rivative, [­Emu(E; T0)]/­E, were determined by fit-
ting ln n(E) by cubic spline functions in the energy
region of (230 # E # 195 kcal/mol).96 Here, we
have set the arbitrary reference temperature to beT0

5 1000 K. Outside this energy region,Emu(E; T0)
was linearly extrapolated as in Eq. (49).

After determining the multicanonical weight fac-
tor, we carried out a multicanonical MD simulation of
1 3 107 steps (or 5 ns) for data collection (MUCA1 in
Table II). In Figure 14 the probability distribution
obtained by MUCA1 is plotted. It can be seen that a

FIGURE 13 Average total potential energy of Met-
enkephalin in gas phase as a function of temperature. The
solid curve is the result from the replica-exchange MD
simulation and the dots are those of regular canonical MD
simulations.

Table II Summary of Parameters in REM, REMUCA, and MUCAREM Simulations

Run No. of Replicas,M Temperature,Tm (K) (m 5 1, . . . , M) MD Steps

REM1 10 200, 239, 286, 342, 409, 489, 585, 700, 836, 1000 23 105

REM2 10 200, 239, 286, 342, 409, 489, 585, 700, 836, 1000 13 106

MUCA1 1 1000 13 107

MUCAREM1 4 375, 525, 725, 1000 2.53 106

FIGURE 14 Probability distribution of potential energy
of Met-enkephalin in gas phase that was obtained from
MUCA1 (see Table II). The dotted curves are the probabil-
ity distributions of the reweighted canonical ensemble atT
5 200 K (left) and 1000 K (right).
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good flat distribution is obtained in the energy region
E1 # E # EM. In Figure 14 the canonical probability
distributions that were obtained by the reweighting
techniques atT 5 T1 5 200 K andT 5 TM 5 1000
K are also shown (these results are essentially iden-
tical to one another among MUCA1, MUCAREM1,
and REM2, as discussed below). Comparing these
curves with those of MUCA1 in the energy regionsE
, E1 andE . EM in Figure 14, we confirm our claim
in the previous section that MUCA1 gives canonical
distributions atT 5 T1 for E , E1 and atT 5 TM for
E . EM, whereas it gives a multicanonical distribu-
tion for E1 # E # EM.

In the previous works of multicanonical simula-
tions of Met-enkephalin in gas phase (see, for in-
stance, Refs. 17 and 41), at least several iterations of
trial simulations were required for the multicanonical
weight determination. We emphasize that in the
present case of REMUCA (REM1), only one simula-
tion was necessary to determine the optimal multica-
nonical weight factor that can cover the energy region
corresponding to temperatures between 200 and
1000 K.

From the density of states obtained by REMUCA
(i.e., REM1), we prepared the multicanonical weight
factors (or the multicanonical potential energies) for
the MUCAREM simulation [see Eq. (53)]. The pa-

rameters of MUCAREM1, such as energy bounds
EL

{ m} andEH
{ m} (m 5 1, . . . , }) are listed in Table

III. The choices ofTL
{ m} and TH

{ m} are, in general,
arbitrary, but significant overlaps between the proba-
bility distributions of adjacent replicas are necessary.
The replica-exchange process in MUCAREM1 was
tried every 200 time steps (or 100 fs). It is less
frequent than in REM1 (or REM2). This is because
we wanted to ensure a sufficient time for system
relaxation.

In Figure 15 the probability distributions of poten-
tial energy obtained by MUCAREM1 are shown. As
expected, we observe that the probability distributions
corresponding to the temperatureTm are essentially
flat for the energy regionEL

{ m} # E # EH
{ m} , are of

the canonical simulation atT 5 TL
{ m} for E , EL

{ m} ,
and are of the canonical simulation atT 5 TH

{ m} for E
. EH

{ m} (m 5 1, . . . , }). As a result, each distri-
bution in MUCAREM is much broader than those in
the conventional REM and a much smaller number of
replicas are required in MUCAREM than in REM (}
5 4 in MUCAREM vs M 5 10 in REM).

In Figure 16 the time series of potential energy for
the first 500 ps of REM2 (a), MUCA1 (b), and
MUCAREM1 (c) are plotted. They all exhibit a ran-
dom walk in potential energy space, implying that
they all performed properly as generalized-ensemble
algorithms. To check the validity of the canonical-
ensemble expectation values calculated by the new
algorithms, we compare the average potential energy
as a function of temperature in Figure 17. In REM2
and MUCAREM1 we used the multiple-histogram
techniques,3,4 whereas the single-histogram method1

was used in MUCA1. We can see a perfect coinci-
dence of these quantities among REM2, MUCA1, and
MUCAREM1 in Figure 17.

We now present the results of a replica-exchange
simulated tempering MC simulation of Met-enkepha-
lin in gas phase.97 The potential energy is again that of
ECEPP/2.99–101 In Table IV we summarize the pa-
rameters of the simulations that were performed. As
described in the previous section, REST consists of
two simulations: a short REM simulation (from which
the dimensionless Helmholtz free energy, or the sim-

Table III Summary of Parameters in MUCAREM1

m TL
{ m} (K) TH

{ m} (K) Tm (K) EL
{ m} (kcal/mol) EH

{ m} (kcal/mol)

1 200 375 375 230 20
2 300 525 525 25 65
3 375 725 725 20 120
4 525 1000 1000 65 195

FIGURE 15 Probability distributions of potential energy
obtained from MUCAREM1 (see Tables II and III).
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ulated tempering weight factor, is determined) and a
subsequent ST production run. The former simulation
is referred to as REM1 and the latter as ST1 in Table

IV. In REM1 there exist 8 replicas with 8 different
temperatures (M 5 8), ranging from 50 to 1000 K as
listed in Table IV (i.e.,T1 5 50 and TM 5 T8

5 1000 K). Thesame set of temperatures were also
used in ST1. The temperatures were distributed expo-
nentially betweenT1 and TM, following the optimal
distribution found in the previous simulated annealing
schedule,103 simulated tempering run,54 and replica-
exchange simulation.84 After estimating the weight
factor, we made a ST production run of 106 MC
sweeps (ST1). In REM1 and ST1, a replica exchange
and a temperature update, respectively, were tried
every 10 MC sweeps.

We first check whether the replica-exchange sim-
ulation of REM1 indeed performed properly. For an
optimal performance of REM the acceptance ratios of
replica exchange should be sufficiently uniform and
large (say,.10%). In Table V we list these quantities.
It is clear that both points are met in the sense that
they are of the same order (the values vary between 10
and 40%).

After determining the simulated tempering weight
factor, we carried out a long ST simulation for data
collection (ST1 in Table IV). In Figure 18 the time
series of temperature and potential energy from ST1
are plotted. In Figure 18(a) we observe a random walk
in temperature space between the lowest and highest
temperatures. In Figure 18(b) the corresponding ran-
dom walk of the total potential energy between low
and high energies is observed. Note that there is a
strong correlation between the behaviors in Figures
18(a) and 18(b), as there should. It is known from our
previous works that the global-minimum-energy con-
formation for Met-enkephalin in gas phase has the
ECEPP/2 energy value of212.2 kcal/mol.21,41

FIGURE 16 Time series of potential energy of Met-
enkephalin in gas phase for one of the replicas in (a) REM2,
(b) MUCA1, and (c) MUCAREM1 (see Tables II and III for
the parameters of the simulations).

FIGURE 17 The average potential energy of Met-en-
kephalin in gas phase as a function of temperature. The
solid, dotted, and dashed curves are obtained from REM2,
MUCA1, and MUCAREM1, respectively (see Tables II and
III for the parameters of the simulations).
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Hence, the random walk in Figure 18(b) indeed vis-
ited the global-minimum region many times. It also
visited high energy regions, judging from the fact that
the average potential energy is around 15 kcal/mol at
T 5 1000 K17,41 (see also Figure 19 below).

For an optimal performance of ST, the acceptance
ratios of temperature update should be sufficiently
uniform and large. In Table VI we list these quanti-
ties. It is clear that both points are met (the values
vary between 26 and 57%); we find that the present
ST run (ST1) indeed properly performed. We remark
that the acceptance ratios in Table VI are significantly
larger and more uniform than those in Table V, sug-
gesting that ST runs can sample the configurational
space more effectively than REM runs, provided the
optimal weight factor is obtained.

We remark that the details of Monte Carlo versions
of REMUCA and MUCAREM have also been
worked out and tested with Met-enkephalin in gas
phase.136 Here in Figure 19,we just show the average
ECEPP/2 potential energy as a function of tempera-
ture that was calculated from the four generalized-
ensemble algorithms, MUCA, REMUCA, MUCAREM,
and REST.136 The results are in good agreement.

We have so far presented the results of general-
ized-ensemble simulations of Met-enkephalin in gas
phase. However, peptides and proteins are usually in
aqueous solution. We therefore want to incorporate
rigorous solvation effects in our simulations in order
to compare with experiments.

Our first example with rigorous solvent effects is a
multicanonical MC simulation, where the solvation
term was included by the RISM theory.47 While low-

energy conformations of Met-enkephalin in gas phase
are compact and formb-turn structures,41 it turned out
that those in aqueous solution are extended. In Figure
20 we show the lowest-energy conformations of Met-
enkephalin obtained during the multicanonical MC
simulation with RISM theory incorporated.47 They
exhibit characteristics of almost fully extended back-
bone structure with large side-chain fluctuations. The
results are in accord with the observations in NMR
experiments, which also suggest extended conforma-
tions.137

We also calculated an average of the end-to-end
distance of Met-enkephalin as a function of tempera-
ture. The results in aqueous solution (the present

Table IV Summary of Parameters in REST Simulations

Run No. of Replicas,M Temperature,Tm (K) (m 5 1, . . . , M) MC Sweeps

REM1 8 50, 77, 118, 181, 277, 425, 652, 1000 53 104

ST1 1 50, 77, 118, 181, 277, 425, 652, 1000 13 106

Table V Acceptance Ratios of Replica Exchange in
REM1 of Table IV

Pair of Temperatures (K) Acceptance Ratio

507 77 0.30
777 118 0.27

1187 181 0.22
1817 277 0.17
2777 425 0.10
4257 652 0.27
6527 1000 0.40

FIGURE 18 Time series of (a) temperature and (b) po-
tential energy in ST1 (see Table IV for the parameters of the
simulation).
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simulation) and in the gas phase (a previous simula-
tion41) are compared in Figure 21.The end-to-end
distance in aqueous solution at all temperatures varies
little (around 12 Å); the conformations are extended
in the entire temperature range. On the other hand, in
the gas phase, the end-to-end distance is small at low
temperatures due to intrachain hydrogen bonds, while
the distance is large at high temperatures, because
these intrachain hydrogen bonds are broken.

The same peptide was also studied by MD simu-
lations of replica-exchange and other generalized-
ensemble simulations in aqueous solution based on
TIP3P water model.138 Two AMBER force
fields120,121 were used. The number of water mole-
cules was 526 and they were placed in a sphere of

radius of 16 Å. The initial configuration is shown in
Figure 22.

In Figure 23 the canonical probability distributions
obtained at the 24 temperatures from the replica-
exchange simulation are shown. We see that there are
enough overlaps between all pairs of distributions,
indicating that there will be sufficient numbers of
replica exchanges between pairs of replicas. The cor-
responding time series of the total potential energy for
one of the replicas is shown in Figure 24. We do
observe a random walk in potential energy space,
which covers an energy range of as much as 2,000
kcal/mol.

Finally, the average end-to-end distance as a func-
tion of temperature was calculated by the multiple-
histogram reweighting techniques of Eqs. (30) and

Table VI Acceptance Ratios of Temperature Update
in ST1

Pair of Temperatures (K) Acceptance Ratio

503 77 0.47
773 50 0.47
773 118 0.43

1183 77 0.43
1183 181 0.37
1813 118 0.42
1813 277 0.29
2773 181 0.29
2773 425 0.30
4253 277 0.26
4253 652 0.43
6523 425 0.42
6523 1000 0.57

10003 652 0.56

FIGURE 19 The average potential energy of Met-
enkephalin in gas phase as a function of temperature. The
results from the four generalized-ensemble algorithms,
MUCA, REMUCA, MUCAREM, and REST, are superim-
posed.

FIGURE 20 Superposition of eight representative low-
energy conformations of Met-enkephalin obtained by the
multicanonical MC simulation in aqueous solution based on
RISM. The figure was created with RasMol.133

FIGURE 21 Average end-to-end distance of Met-
enkephalin in aqueous solution (SOL) and in gas phase
(GAS) as a function of temperature. Here, the end-to-end
distance is defined as the distance between the nitrogen
atom at the N-terminus and the oxygen atom at the C-
terminus.
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(31). The results both in gas phase and in aqueous
solution are shown in Figure 25. The results are in
good agreement with those of ECEPP/2 energy plus
RISM solvation theory47 in the sense that Met-
enkephalin is compact at low temperatures and ex-
tended at high temperatures in gas phase and extended
in the entire temperature range in aqueous solution
(compare Figures 21 and 25).

CONCLUSIONS

In this article we have reviewed uses of generalized-
ensemble algorithms in molecular simulations of bi-
omolecules. A simulation in generalized ensemble
realizes a random walk in potential energy space,

FIGURE 22 Initial configuration of replica-exchange MD simulations of Met-enkephalin in
aqueous solution with 526 TIP3P water molecules.

FIGURE 23 The canonical probability distributions of
the total potential energy of Met-enkephalin in aqueous
solution obtained from the replica-exchange MD simulation
at the 24 temperatures.

FIGURE 24 Time series of the total potential energy of
Met-enkephalin in aqueous solution obtained for one of the
replicas from the replica-exchange MD simulation. Corre-
sponding times series in the canonical ensemble at temper-
atures 250 and 500 K are also shown.
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alleviating the multiple-minima problem that is a
common difficulty in simulations of complex systems
with many degrees of freedom.

Detailed formulations of the three well-known
generalized-ensemble algorithms, namely, multica-
nonical algorithm, simulated tempering, and replica-
exchange method, were given. We then introduced
three new generalized-ensemble algorithms that com-
bine the merits of the above three methods, which we
refer to as replica-exchange multicanonical algorithm,
replica-exchange simulated tempering, and multica-
nonical replica-exchange method.

With these new methods available, we believe that
we now have working simulation algorithms that we
can use for conformational predictions of peptides and
proteins from the first principles, using the informa-
tion of their amino-acid sequence only. It is now high
time that we addressed the question of the validity of
the standard potential energy functions such as
AMBER, CHARMM, GROMOS, and ECEPP. For
this purpose, conventional simulations in the canoni-
cal ensemble are of little use because they will nec-
essarily get trapped in states of local-minimum-en-
ergy states. It is therefore essential to use generalized-
ensemble algorithms in order to test and develop
accurate potential energy functions for biomolecular
systems. Some preliminary results of comparisons
among ECEPP/2 and different versions of AMBER
force fields were given in the present article. We
remark that more detailed analyses that compare dif-
ferent versions of AMBER by multicanonical MD
simulations already exist.139 Likewise, the validity of
solvation theories should also be tested. For this,
RISM theory111–113can be very useful. For instance,
we have successfully given a molecular mechanism of

secondary structural transitions in peptides due to
addition of alcohol to solvent,140 which is very diffi-
cult to attain by regular molecular simulations.

Our simulations were performed on the Hitachi and other
computers at the Research Center for Computational Sci-
ence, Okazaki National Research Institutes. This work is
supported, in part, by a grant from the Research for the
Future Program of the Japan Society for the Promotion of
Science (JSPS-RFTF98P01101).
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