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Abstract 

Years of research in biology have established that all cellular functions are deeply connected to the 
shape of their molecular actors. As a response, structural molecular biology has emerged as a new line of 
experimental research focused on revealing the structure of bio-molecules. This branch of biology has 
recently experienced a major uplift through the development of high-throughput structural studies aimed 
at developing a comprehensive view of the protein structure universe.  While these studies are generating 
a wealth of information, stored into protein structure databases, the key to their success lies in our ability 
to organize and analyze the information contained in these databases, and integrate it with other biological 
efforts aimed at solving the mysteries behind cell functions. In this survey, I focus on the first step behind 
any such organization scheme, namely the classification of protein structures. I review the properties of 
protein structures, with a special interest on their geometry. Computer methods for the automatic 
comparison and classification of these structures are then reviewed. In parallel, I describe the existing 
classifications of protein structures, and their applications in biology, with a special focus on 
computational biology. I conclude the review with a discussion on the future of these classifications. 
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Introduction 

 

The molecular basis of life rests on the activity of large biological macro-molecules, including nucleic 
acids (DNA and RNA), carbohydrates, lipids and proteins. While each play an essential role, there is 
something special about proteins, as they are the active actors of cellular functions. In this paper, I 
describe the growing interest in unraveling the mysteries behind their functions, focusing on the effort of 
organizing the information obtained from structural studies of proteins. Firstly, I briefly relate this effort 
to the continuous developments of scientific classification in biology. 
 

Classification and biology. 

 

Classification is a very broad term which simply means putting things in classes.  Any organizational 
scheme is a classification:  objects can be sorted with respect to size, colors, origins, ...  Classification is 
one of the most basic activities in any science, probably because it is easier to think about a few groups 
than it is to think about a whole population.  Scientific classification in biology probably started with 
Aristotle, in the 4th century B.C.  He divided all livings things into two groups, animal and plants.  
Animals were themselves divided into two groups, those with blood, and those without (at least no red 
blood), while plants were divided into three groups based on their shapes.  Aristotle was the first in a long 
line of biologists who classified organisms in an arbitrary, though logical way that made it easy to convey 
scientific information.  Among these biologists, it is worth citing the Swedish naturalist Corolus Linnaeus 
from the 18th century who set formal rules for a two name system called the binomial system of 
nomenclature, which is still used today.  However, with the publication of "On the origin of species" by 
Darwin, the purpose of classification changed.  Darwin argued that classification should reflect the history 
of life, that is species should be related based on a shared history. Systematic classifications were 
introduced accordingly, whose aims are to reveal the phylogeny, i.e. the hierarchical structure by which 
every life-form is related to every other life-form.  The recent advances in genetics and biochemistry, the 
wealth of information coming from the genome sequencing projects and the tools of bio-informatics are 
obviously playing an essential role in the development of these new classification schemes, by feeding to 
the classifiers and taxonomists more and more data on the evolutionary relationships between species.  
Note that the genetic information used for classification is not limited to the sequence of the genes, but 
takes into account the products of these genes, and their contributions to the mechanisms of life.  As 
function is related to shape, this is where protein structure classification will play a significant role in our 
understanding of the organization of life.  Paraphrasing Jacques Monod, it is in the protein that lies the 
secret of life (1). 
 

The biomolecular revolution. 

 

All living organisms can be described as arrangements of cells, the smallest units capable of carrying 
functions important for life.  Cells can be divided into organelles, which are themselves assemblies of bio-
molecules.  These bio-molecules are usually polymers of smaller subunits, whose atomic structures are 
known from standard chemistry.  There are many remarkable aspects to this hierarchy, one of them being 
that it is ubiquitous to all life form, from unicellular organisms to complex multi-cellular species like us.  
Unraveling the secrets behind this hierarchy has become one of the major challenges of the twentieth and 
now twenty-first centuries.  While physics and chemistry have provided significant insight into the 
structure of the atoms and their arrangements in small chemical structures, the focus now is set on 
understanding the structure and function of bio-molecules.  These usually large molecules serve as storage 
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for the genetic information (the nucleic acids such as DNA and RNA), and as key actors of cellular 
functions (the proteins).  Biochemistry, the field that studies these bio-molecules, is currently experiencing 
a major revolution.  In hope of deciphering the rules that define cellular functions, large scale 
experimental projects are performed as collaborative efforts involving many laboratories in many 
countries.  The main aims of these projects are to provide maps of the genetic information of different 
organisms (the genome projects), to derive as much structural information as possible on the products of 
the corresponding genes (the structural genomics projects), and to relate these genes to the function of 
their products, usually deduced from their structure (the functional genomics projects).  The success of 
these projects is completely changing the landscape of research in biology.  As of October 2004, more 
than 220 whole genomes have been fully sequenced and published, corresponding to a database of over a 
million gene sequences (see http://www.genomesonline.org/ (2)) , and more than a thousand other 
genomes are currently being sequenced.  The need to store this data efficiently and to analyze its contents 
has led to the emergence of a collaborative effort between computer science and biology, referred to as 
bio-informatics.  In parallel, the repository of bio-molecular structures (3, 4) contains more than 27,600 
structures of proteins and nucleic acids.  The similar need to organize and analyze the structural 
information contained in this database is leading to the emergence of another partnership between 
computer science and biology, namely bio-geometry.  The combined efforts of bio-informatics and bio-
geometry are expected to provide a comprehensive picture of the protein sequence and structure spaces, 
and their connection to cellular functions.  Note that the emergence of these two disciplines is often seen 
as a consequence of a paradigm shift in molecular biology (5), as the classical approach of hypothesis-
driven research in biochemistry is being replaced with a data-driven discovery approach.  I believe that in 
fact the two approaches co-exist, and that both benefit from these computer-based disciplines. 
 

Outline.   The next section describes proteins, and surveys their different levels of organization, from 
their primary sequence to their quaternary structure in cells.  The following section surveys automatic 
methods for comparing protein structures, and their application to classification.  I then describe the 
existing protein structure classifications, focusing on SCOP, CATH, and the DALI domain classification.  
Finally I conclude the paper with a discussion of the future of protein structure classifications. 
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Basic principles of protein structure 
 

While all bio-molecules play an important part in life, there is something special about proteins, which are 
the products of the information contained in the genes.  A perhaps surprising finding that crystallized over 
the last handful of decades is that geometric reasoning plays a major role in our attempt to understand the 
activities of these molecules.  In this section, the basic principles that govern the shapes of protein 
structures are briefly reviewed.  More information on protein structures can be found in protein 
biochemistry text books, such as those of Schulz and Schirmer (6), Cantor and Schimmel (7), of Branden 
and Tooze (8) and of Creighton (9).  I also refer the reader to the excellent review of Taylor and 
collaborators (10). 
 

Visualization. 

 
A) B) C)

 
 
Figure 1: Visualizing protein structures.  Myoglobin is a small protein very common in muscle cells, where it 
serves as oxygen storage.  Its structure was determined by X-ray crystallography as early as 1960 by John Kendrew 
and his collaborators (13).  It was in fact the first protein structure available.  Here I show the structure of sperm 
whale myoglobin using three different types of visualization.  For simplicifity, I do not show the heme.  The 
coordinates are taken from the PDB file 1mbd.  (A) Cartoon.  This representation provides a high level view of the 
local organization of the protein in secondary structures, shown as idealized helices.(B) Skeletal model.  This 
representation uses lines to represent bonds; atoms are located at their endpoints where the lines meet.  It emphasizes 
the chemical nature of the molecule (C) Space-filling diagram.  Atoms are represented as balls centered at the 
atoms, with radii equal to the van der Waals radii of the atoms.  This representation shows the tight packing of the 
protein structure.  Each of the representations is complementary to the others.  Figure drawn using MOLSCRIPT 
(14). 
 
The need for visualizing bio-molecules is based on the early understanding that their shape determines 
their function.  Early crystallographers who studied proteins could not rely (as it is common nowadays) on 
computers and computer graphics programs for representation and analysis.  They had developed a large 
array of finely crafted physical models that allowed them to have a feeling for these molecules.  These 
models, usually made out of painted wood, plastic, rubber and/or metal were designed to highlight 
different properties of the molecule under study.  In the space-filling models, such as those of Corey-
Pauling-Koltun (CPK) (11, 12), atoms are represented as spheres, whose radii are the atoms' van der 
Waals radii.  They provide a volumetric representation of the bio-molecules, and are useful to detect 
cavities and pockets that are potential active sites.  In the skeletal models, chemical bonds are represented 
by rods, whose junctions define the position of the atoms.  These models were used for example by 
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Kendrew and colleagues in their studies of myoglobin (13).  They are useful to the chemists by 
highlighting the chemical reactivity of the bio-molecules and, consequently, their potential activity.  With 
the introduction of computer graphics to structural biology, the principles of these models have been 
translated into software such that molecules could be visualized on the computer screen.  Figure 1 shows 
examples of computer visualizations of myoglobin, including space-filling and skeletal representations.  
Many computer programs are now available that visualize bio-molecules.  I only cite here MOLSCRIPT 
(14) and VMD (15), which have been used to generate most of the figures of this paper. 
 
 

Protein Building blocks. 

 

Proteins are heteropolymer chains of amino acids, often referred to as residues.  This term comes from 
chemistry and describes the material found at the bottom of a reaction tube once a protein has been cut 
into pieces in order to determine its composition.  There are twenty naturally occurring amino acids that 
make up proteins.  With the exception of proline, amino acids have a common structure, shown in figure 
2A.  Naturally occurring amino acids that are incorporated into proteins are, for the most part, the 
levorotary (L) isomer.  Substituants on the alpha carbon, i.e. side-chains, range in size from a single 
hydrogen atom to large aromatic rings and can be charged or include only non-polar saturated 
hydrocarbons (16); see table 1 and figure 2B. 
 

 

Classification Amino acid 

Non polar glycine (G), alanine (A), valine (V), leucine (L), isoleucine 

(I), proline (P), Methionine (M), Phenylalanine (F), 

Tryptophan (W) 

Polar Serine (S), Threonine (T), Asparagine (N), Glutamine (Q), 

Cysteine (C), Tyrosine (Y) 

Acidic (polar) aspartic acid (D), glutamic acid (E) 

Basic (polar) lysine (K), arginine (R), histidine (H) 

 

Table 1:  Classification of the 20 amino acids based on their interaction with water (16). The one-letter code of 
each amino acid is given in parenthesis.  Non polar amino acids do not have concentration of electric charges and are 
usually not soluble in water.  Polar amino acids carry local concentration of charges, and are either globally neutral, 
negatively charged (acidic), or positively charged (basic).  Acidic and basic amino acids are classically referred to as 
electron acceptors and electron donors, respectively, which can associate to form salt bridges in proteins.  Amino 
acids in solution are mainly dipolar ions:  the amino group NH2 accepts a proton to become NH3+ and the carboxyl 
group COOH donates a proton and becomes COO-. 
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Figure 2: The twenty natural amino acids that make up proteins. (A) Each amino acid has a main-chain (N, Cα, 
C and O) on which is attached a side-chain schematically represented as R.  Amino acids in proteins are attached 
through planar peptide bonds, connecting atom C of the current residue to atom N of the following residue.  For sake 
of simplicity, I omit the hydrogens. (B) Classification of the amino acids side-chains R according to their chemical 
properties.  Glycine (Gly) is omitted, as its side-chain is a single H atom. Figure drawn using Molscript (14). 
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Protein Structure Hierarchy. 
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Figure 3: The three main secondary structure elements (SSE) found in proteins. For simplicity, side-chains and 
non-polar hydrogens are ignored.  The protein backbone is shown with balls and sticks, and hydrogen bonds are 
shown as discontinuous lines.  (A) The regular α-helix is a right handed helix, in which all residues adopt similar 
conformations, with the backbone torsion angles ϕ and φ close to -60 and -40, respectively.  The α-helix is 
characterized by hydrogen bonds between the oxygen O of residue i, and the polar backbone hydrogen HN (bound to 
N) of residue i+4.  Note that all bonds C=O and N-HN are parallel to the main axis of the helix.  (B) An anti-parallel 
β-sheet.  Two strands (stretches of extended backbone segments, with ϕ and φ close to -120 and 120, respectively) 
are running in an anti-parallel geometry.  The atoms HN and O of residue i in the first strand are involved in 
hydrogen bonds with the atoms O and HN of residue j in the opposite strand, respectively, while residues i+1 and j+1 
face outwards.  (C) A parallel β-sheet.  The two strands are parallel, and the atoms HN and O of residue i in the first 
strand are involved in hydrogen bonds with the O of residue j and the HN of residue j+2, respectively.  The same 
alternating pattern of residues involved in hydrogen bonds with the opposite strand, and facing outwards is observed 
in parallel and anti-parallel β-sheets.  A strand can therefore be involved in two different sheets. Figure drawn using 
Molscript (14). 
 

Condensation between the -NH3+ and the -COO- groups of two amino acids generates a peptide bond and 
results in the formation of a dipeptide.  Protein chains correspond to an extension of this chemistry, 
resulting in long chains of many amino acids bonded together.  The order in which amino acids appear 
defines the primary sequence or primary structure of the protein.  In its native environment, the 
polypeptide chain adopts a unique three-dimensional shape, referred to as the tertiary or native structure 
of the protein (17).  The amino acid backbones are connected in sequence forming the protein main-chain, 
which frequently adopts canonical local shapes or secondary structures, mostly α-helices and β-strands 
(see figure 3).  The former is a right handed helix with 3.6 aminoacids per turn, while the latter is an 
approximately planar layout the backbone.  Helices often pack together to form a hydrophobic core, while 
β-strands pair together to form parallel, or antiparallel β-sheets .  Note that in addition to these two types 
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of secondary structures, there is a wide variety of other commonly occurring sub-structures, referred to as 
super-secondary structure.  More information on these sub-structures can be found in the work of Efimov 
(18-21). 
 

Three types of proteins. 

 

Protein structures come in a large range of sizes and shapes. They can be divided into three major groups, 
corresponding to fibrous proteins, membrane proteins, and globular proteins. 
 

Fibrous proteins are elongated molecules in which the secondary structure forms the dominant 
structure.  They are insoluble, play a structural or supportive role in the body, and are also involved in 
movement (such as in muscle and ciliary proteins).  Fibrous proteins often have regular repeating 
structures.  Keratin for example, which is found in hair and nails, is a helix of helices, and has a seven-
residue repeating structure.  Silk on the other hand is composed only of β-sheets, with alternating layers of 
glycines, and alanine and serines.  In collagen, the major protein component of connective tissue, every 
third residue is a glycine, and many of the others are prolines. 

 
Membrane proteins are restricted to the phospho-lipid bilayer membrane that surrounds the cell and 

many of its organelles.  These proteins cover a large range, from globular proteins anchored in the 
membrane by means of a tail, to proteins that are fully embedded in the membrane.  Their function is 
usually to ensure transport through the membrane, ranging from simple ions to nutrients.  The structures 
of fully embedded membrane proteins can be classified into two major categories:  the all helical 
structures, such as bacteriorhodopsin, and the all beta structures, such as porins (see figure 4).  Note that 
as of October 2004, there are 158 structures of membrane proteins in the PDB, out of which 86 are unique 
(see http://blanco.biomol.uci.edu/Membrane_Proteins_xtal.html).  

 
 
 

(a) Bacteriorhodopsin (b) Porin  
 

Figure 4: Two examples of membrane proteins.  (a) Bacteriorhodopsin (PDB code 1C3W) is a mainly α-protein, 
containing seven helices.  It is a membrane protein serving as an ion pump, and found in bacteria that can survive in 
high salt concentration.  (b) Porin (PDB code 2por) is a β-barrel.  Porins work as channels in cell membranes, which 
let small metabolites such as ions and amino acids in and out of the cell.  Figure drawn using Molscript (14). 
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Globular proteins have a unique structure derived from a non repetitive sequence.  They range in size 
from hundred to several hundred residues, and adopt a compact structure.  In globular proteins, non-polar 
amino acids have a tendency to re-group and form the core of the proteins, while polar amino acids remain 
accessible to the solvent.  In the tertiary structure, β-strands are usually paired in parallel or anti-parallel 
arrangements, to form β-sheets.  On average, the protein main-chain consists of about 25% of residues in 
α-helix formation, 25% of residues in β-strands, with the rest of the residues adopting less regular 
structural arrangements (22).  
 

Scheme Description Web address 

PDB Repository of protein structures http://www.rcsb.org/ 

PDB at a 
Glance 

Interface to PDB http://cmm.info.nih.gov/modeling/pdb_at_a_glance.html 

Molecules to 
Go 

Interactive interface to the PDB http://molbio.info.nih.gov/cgi-bin/pdb/ 

MSD EBI interface to the PDB, with 
integration to EBI resources 

http://www.ebi.ac.uk/msd/ 

PDBSum Summaries and Structural analyses 
of PDB files 

http://www.ebi.ac.uk/thornton-srv/databases/pdbsum 

Biotech 
Validation 
Suite 

Suite of programs that generates a 
quality control on protein 
structures 

http://biotech.ebi.ac.uk:8400/ 

NRL_3D Sequence-structure databases http://laguerre.psc.edu/general/software/packages/nrl_3d/ 

Entrez NCBI databases http://www.ncbi.nlm.nih/gov/Database/index.html 

SRS Sequence Retrieval Services 
(includes structural information) 

http://srs.embl-heidelberg.de:800/srs5/ 

DSSP Database of secondary structures 
of proteins (available through 
SRS) 

http://srs.embl-heidelberg.de:800/srs5/ 

TOPS Generates a cartoon of the 
topology of a protein 

http://www.tops.leeds.ac.uk/ 

PISCES Protein sequence culling server: 
generates subsets of PDB based on 
users’  criteria 

http://dunbrack.fccc.edu/PISCES.php/ 

Astral Databases and tools for analyzing 
protein structure; derived from 
SCOP 

http://astral.berkeley.edu/ 

 

Table 2: Resources on protein structures 

 

Geometry of globular proteins. 

 

From the seminal work of Anfinsen (23), we know that the sequence fully determines the three-
dimensional structure of the protein, which itself defines its function.  While the key to the decoding of the 
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information contained in genes was found more than fifty years ago (the genetic code), we have not yet 
found the rules that relate a protein sequence to its structure (24, 25).  Our knowledge of protein structure 
therefore comes from years of experimental studies, either using X-ray crystallography or NMR 
spectroscopy.  The first protein structures to be solved were those of myoglobin and hemoglobin (13, 26). 
Currently (October 2004), there are nearly 27,700 protein structures in the PDB database (3, 4) of bio-
molecular structures; see http://www.rcsb.org. (Note that this numbers overestimates the number of 
different structures available as the PDB is redundant, i.e. it contains several copies of the same proteins, 
with minor mutations in the sequence and no changes in the structure).  Table 2 lists the web addresses of 
protein structure databases and the resources available for analyzing these structures. 
 

As there are only two types of secondary structures (α and β), proteins can be divided into three main 
structural classes (27):  mainly α proteins (28), mainly β proteins (29-31), and mixed α - β proteins (32). 
A fourth class includes proteins with little or no secondary structures at all, which are stabilized by metal 
ions and/or disulphide bridges.  There has been significant effort put into classifying protein structures 
into their main folding class automatically:  these efforts will be reviewed in the next section.  In parallel, 
there has been significant work on predicting a protein folding class based on its sequence.  More details 
can be found in (33-40). 

 
The mainly α class, the smallest of all three major classes, is dominated by small proteins, many of 

which form a simple bundle of α helices packed together to form a hydrophobic core.  A common motif is 
the four helix bundle structure (see figure 5).  The most studies α structure is the globin fold, which as 
been found in a large group of related proteins, including myoglobin and hemoglobin.  This structure 
includes eight helices that wrap around the core to form a pocket where a heme group is bound (13). 

 

Nter Nter

A) B)

NC NC

C) D)

 

 

Figure 5: Two different topologies of four helix bundles.  A bundle is an array of α-helices, each oriented roughly 
along the same (bundle) axis.  A and C show a four helical, up-and-down bundle with a left handed twist, observed 
in hemerythrin from a sipunculid worm (PDB code 2hmz).  B and D show a four helix bundle with a right handed 
twist, observed in a fragment of the dimerization domain of a liver transcription factor (PDB code 1g2y).  A and B 
are cartoon representations of the proteins obtained with MOLSCRIPT (14), while C and D show the schematic 
topologies produced by TOPS (http://www.tops.leed.ac.uk/). 
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The mainly β class contains the parallel and antiparallel β structures.  In these, the β strands are usually 
arranged in two β sheets that pack against each other and form a distorted barrel structure.  There are three 
major types of β barrels, the up-and-down barrels, the Greek key barrels (41), and the jelly roll barrels 
(see figure 6).  Most of the known antiparallel β structures, including the immunoglobulins have barrels 
that include at least one Greek key motif.  The two other motifs are observed in proteins of quite diverse 
function, where functional diversity is obtained by differences in the loop regions that connect the β 
strands.  β structures are often characterized by the number of β-sheets in the structure, and the number 
and direction of the strands in the sheet. This leads to a fairly rigid classification scheme (42), which is 
quite sensitive to the definition of hydrogen bonds and β-strands. 
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Figure 6: Three common sandwich topologies of beta proteins: a meander (A and D) observed in a glycoprotein 
from chicken (PDB code 2cam), a Greek key (B and E) observed in an α-amylase (PDB code 1bli), and a jelly roll 
(C and F) observed in a gene activator protein from E. Coli (PDB code 1g6n).  A meander (or up-and-down) is a 
simple topology in which any two consecutive strands are adjacent and anti parallel.  A Greek key motif is a 
topology of a small number of b-sheet strands in which some inter-strand connection exist between b-sheets.  The 
jelly-roll topology is a variant of the Greek key topology with both ends crossed by two inter-strand connections.  A, 
B, and C are cartoon representations of the proteins obtained with MOLSCRIPT (14), while D, E and F show the 
schematic topologies produced by TOPS (http://www.tops.leed.ac.uk/).  

 

The α-β protein class is the largest of all three classes.  It can be subdivided into proteins that have a 
mainly alternating arrangement of α helices and β strands along the sequence, and those that have more 
segregated secondary structures.  The former class can be itself divided into two groups:  one with a 
central core of often eight parallel β strands arranged together into a barrel surrounded by α helices, and a 
second group that comprises an open, twisted parallel or mixed β sheet, with α helices on both side (see 
figure 7).  A particularly striking example of α-β barrel is seen in the eight-fold β-α barrel (βα)8 which 

was found originally in the triose phosphate isomerase of chicken (43), and is consequently often referred 
to as the TIM-barrel (for a complete analysis, see(44-51)).  Many of the proteins adopting a TIM barrel 
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structure have completely different amino acid sequences and different functions.  The open α/β-sheet 
structures vary considerably is size, number of β strands, and their strand order. 
 

N C N C
A) B)

 

 

Figure 7: Topology (A) and cartoon representation (B) of the TIM barrel.  The protein chain alternates between 
β and α secondary structure type, giving rise to a barrel β-sheet in the center surrounded by a large ring of a-helix on 
the outside.  This structure, first seen in the triose phosphate isomerase of chicken ((PDB code 1tim, after which it is 
often name TIM barrel), has been observed in many unrelated proteins since then.  The topology is drawn using 
TOPS (http://www.tops.leed.ac.uk/), and the cartoon is generated using MOLSCRIPT (14). 
 
 
Protein domains. 
 

Large proteins do not contain a single large hydrophobic core, probably because of limitations in the 
folding kinetics and stability.  Single compact units of more than 500 amino acids are rare. Large proteins 
in fact are organized into "units" with sizes around 200-300 residues, referred to as domains (52-54).  For 
a detailed analysis of domains in proteins, see (55).  Domains are defined simultaneously as:  (a) regions 
that display a significant level of sequence similarity; (b) the minimal part of a gene that is capable of 
performing a function; (c) a region of a protein with an experimentally assigned function; (d) region of a 
structure that recurs in different contexts in different proteins; and (e) compact, spatially distinct units of 
protein structure.  As more structures of proteins are solved, contradictions in these definitions appear.  
Some domains are compact while others are clearly not globular. Some are too small to form a stable 
domain, and lack a hydrophobic core.  Currently, we are in the awkward situation in which the concept of 
structural domain is well accepted, yet its definition remains ambiguous (56).  This will be discussed in 
details in the next section. 
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Resources on protein structures 

 

All experimental protein structures available today are stored in the Protein Databank (PDB) (3), 
maintained through the RCSB consortium (4), and available on the web at http://www.rcsb.org/.  Many 
services have been developed to supplement the PDB in order to ease access to the information in 
contains.  For example, the services “PDB at a glance”  and “Molecules to Go” were designed as easy-to-
use interfaces to the PDB with simple search engines.  The MSD search relational database is derived 
from the PDB, and has the aim of providing a knowledge discovery and data mining environment for 
biological structure data.  PDBSum (57, 58) and the Biotech Validation Suite are services from which 
quality control programs can be run to check the quality of a protein structure.  NRL, Entrez and SRS are 
integrated services that regroup the PDB with other databases on proteins.  For example, SRS includes 
DSSP (59), a database of secondary structures of proteins.  PISCES (60) and ASTRAL (61-63) can 
generate subsets of the PDB database, based on the user’s criteria.  Table 2 lists the web addresses of all 
these services. 
 

 



15 

Protein structure comparison 
 

Any attempts to study a large collection of objects will usually start with classifying them according to a 
given measure of similarity.  This is probably a consequence of the fact that it is easier to deal with a few 
representatives than to deal with a whole population.  Protein structure similarity is most often detected 
and quantified by a protein structure alignment program, applied to the different domains of the proteins 
considered.  In this section, I review existing techniques for automatically detecting domains in protein 
structures, as well as techniques for finding the optimal alignment between two structural domains.  I 
conclude with a brief description of new techniques for comparing protein structural domains that do not 
rely on a structural alignment, but on a direct comparison of the topology of the domains. 
 

Automatic identification of protein structural domain. 

 

Decomposition of multi-domain protein structures into individual domains has been traditionally done 
manually.  As the rate of protein structure determination has increased drastically in the past few years, 
this manual process has become a bottleneck in maintaining and updating protein structure classifications.  
There is a need consequently for automation.  Automatic decomposition of proteins into structural 
domains can be traced back to the work of Rossman and Liljas in 1974 (64), who used Cα - Cα distance 
maps.  They suggested that a domain has internally many short residue-residue distances, but few short 
distances with the rest of the protein.  Analysis of the distance plot however required human intervention.  
Crippen (17) generalized this concept, using hierarchical cluster analysis to protein fragment-fragment 
contacts.  This procedure generates a tree of protein fragments, from small, locally compact region to the 
complete protein.  Several methods have been subsequently proposed, that follows this concept of 
identifying domains based on a difference between intra-domain and inter-domain properties.  These 
properties often refer to distances (intra domain distances between residues are usually shorter than inter 
domain distances (65-68), contact surface area between domains (69, 70), "compactness" (52, 71, 72), or 
dynamics (73).  To find the cutting points in a protein chain that delineate domains, recursive algorithms 
have been developed which either scan the chain to find single cuts such that the two resulting fragments 
very a given protein domain definition based on one of the properties enumerated above, or directly look 
for multiple cuts (see for example (68)).  This problem has also been formulated as en eigenvalue problem 
on the Cα-Cα distance matrix (73), or as a network flow problem (74, 75).  The methods described above 
take the approach in which a predefined domain definition is imposed on the structural data.  In the 
language of systems analysis, such methods are referred to as "top-down" approaches, and the inherent 
problem in their applications is the difficulty to recognize when the data fit, or do not fit the model.  An 
alternative approach is to reverse the direction and let the model emerge from the data, in what is often 
referred to as a "bottom-up" approach.  Taylor (76) recently developed a "bottom-up" approach to identify 
domains in protein, using an Ising model, in which the structural elements of the model change state 
according to a function of the state of the neighbors.  Briefly, his procedure works as follows.  Each 
residue in the protein chain is assigned a numeric label, usually the sequential residue number itself.  If a 
residue i with label si is surrounded by neighbors with, on average, a higher label, then its label increases, 

otherwise it decreases.  This procedure is iterated until the system reaches equilibrium.  Special care is 
taken to ensure that the protein chain does not pass too frequently between domains, that secondary 
structures, in particular β-sheets are not broken, and that small domains are either ignored or avoided.  For 
full details, see (76).  Swindells developed an alternative "bottom-up" approach, in which he first 
identifies core regions in the protein (77), which are then extended to define the different domains in the 
proteins (78).  Most of these methods include a refinement scheme to assess the quality of the domains 
that have been identified, based on their accessible surface area , hydrophobic moment profile, size of the 
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domain, dynamics between domains, compactness, number of protein segments (75), and presence of 
intact β sheets (76). 
 

 

Program Web access 
DIAL http://www.ncbs.res.in/~faculty/mini/ddbase/dial.html 

DomainParser http://compbio.ornl.gov/structure/domainparser 

DOMAK http://www.compbio.dundee.ac.uk/Software/Domak/domak.html 

PDP http://123d.ncifcrf.gov/pdp.html 

 

Table 3: Web sites for publicly available services and/or programs for protein domain assignment 

 

The diversity in the definitions of protein structural domains these domains is a serious issue for the 
generation of protein structure classifications.  Many programs have been developed to delineate domains 
automatically in multi-domain proteins.  In table 3, I list the programs that are currently accessible on the 
web, either as a web service, or available for download.  While these programs agree on most cases, the 
existence of discrepancies still prevents consistent assignments of protein domains (56).  The absence of 
quality control on the results of the protein domain assignment programs has led the developers of protein 
structure classifications to use a combination of automatic and manual methods.  For example, CATH (79) 
defines domains in multi-domain proteins based on a consensus of three automatic programs, namely 
PUU (73), DOMAK (80) and Detective (78).  When all three programs agree on an assignment, the 
corresponding domains are included in CATH.  In cases of disagreement, the domains are assigned 
manually, either from visual inspection, or from information available in the literature and/or on the web.  
In fact, several structural domain databases are available on the web to assist manual assignments of 
domains (see table 4). 
 

 

Database Web access Method 

3Dee http://www.compbio.dundee.ac.uk/3Dee DOMAK 

Authors http://www.bmm.icnet.uk/~domains/test/dom-rr.html Domains identified in the literature 

DALI http://www.ebi.ac.uk/dali/domain/3.1beta Dali Domain Definition 

DDBASE http://www.ncbs.res.in/~faculty/mini/ddbase/ddbase.html DIAL 

 

Table 4: Databases of protein structural domains 

 

The rigid body transformation problem  

 
Definition 
 
I start with the (relatively) easier problem of comparing two protein structures with the same number of 
atoms and a known correspondence table between these atoms (for review, see (81)).  This problem is 
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often solved when comparing two possible models for the structure of a protein.  Because it is such a 
common problem, and because it still creates some confusion on how it can be solved (82), I present here 
a full mathematical description of the problem, as well as a proof for one of its closed form solution.  The 
problem of comparing two different models of a protein can be formalized as: 
 
Rigid Body Transformation Problem: given two sets of points A=(a1, a2, …, an) and B=(b1,b2,…bm) in 
three dimensional space and assume that they have the same cardinality, i.e. n=m, and that the element ai 
corresponds to the element bi, find the optimal rigid body transformation Gopt between the two sets that 
minimizes a given distance metric D over all possible rigid body transformation G, i.e. 
 
 { }))((min BGAD

G
−          [1] 

 
When comparing two proteins, the sets of points can include the Cα only, all backbone atoms, or all atoms 
of the proteins.  Different metrics have been used in the literature to determine the geometric similarity 
between sets of points.  For protein superposition, the most common metric is the coordinate Root Mean 
Square deviation, or cRMS, defined as follows: 
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A rigid body transformation is a transformation that does not produce changes in the size, shape or 

topology of an object. Mathematically, it can be defined as a mapping G: 33 ℜ→ℜ  that satisfies the 
properties: 
 

 yxyGxG −=− )()(   for all points x and y     [3] 

and 
 
 )()()( yGxGyxG ∧=∧    for all vectors x and y     [4] 

 
where ∧  is the cross product. 
 
Equation [3] states that distances are conserved, while equation [4] says that internal reflection are not 
allowed.  Rotations and translations are two examples of rigid body transformation, and in fact a general 
rigid body transformation can be expressed as a combination of a rotation R and a translation T.  The 
transformation problem can then be restated as finding the optimal rotation R and optimal translation T 

such that TRBA −−  is minimum. 

 
A closed form solution based on SVD 
 
In the literature, there exist a large number of algorithms that solve the rigid transposition problem, 
coming from various fields including computer vision and image processing, robotics, astronomy and 
computational biology.  They differ with respect to the representation of the transformation, and the 
minimization procedure.  Some of these algorithms are based on closed form solutions, while others use 
iterative solutions.  For detailed descriptions of these algorithms, including comparison of their 
performances, I refer the readers to the surveys of Sabata and Aggarwal (83), Ferrari and Guerra (84), and 
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Eggert and colleagues (85).  Here I focus on the representation classically used in computational biology, 
and briefly describe its background.  It is based on the singular value decomposition (86) of a correlation 
matrix C between the two sets of points (87-90).  This method appears to have been first derived by 
Schonenman in the context of factor analysis (91).  Other approaches include solutions based on a power 
decomposition of C (92), or on a representation of rotations with quaternions (93-95).  These methods 
have been shown to be equivalent (85, 95). 
 
Using the definition of the metric given in equation [2], the rigid transformation problem can be restated 
as finding the rotation Rmin and the translation Tmin such that 
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is minimum. 
 
Considering variations with respect to T first, we find that for an extremum of ε, 
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where µA and µB are the barycenters of A and B, respectively. 
 
Note that if the two sets of points are shifted such that their barycenters coincide at the origin, Tmin=0.  Let 
xi=ai-µA and yi=bi-µB be the coordinates of the shifted points, and X = [x1,x2,…,xn] and Y=[y1,y2,…yn] the 
3xn matrices representing the two sets of points A and B, after shifting.  The rigid body transformation 
problem can then be restated as finding the optimal rotation matrix Rmin such that 
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is minimum. 
 
Let C be the correlation matrix of X and Y: 
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and UDVT a singular value decomposition (86) of C (UUT=VVT=I, D= diag(di), d1≥d2≥d3≥0).  Then the 
minimum value of ε with respect to R is 
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where λ = sign(det(C)).  The optimal rotation is given by 
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when rank(C) ≥2. 
 
This result was first formulated by Schöneman (91), later refined by Arun et al (90), Horn et al (92), and 
Umeyama (96).  Here I follow the proof of Umeyama. 
 
Finding a rotation matrix R that minimizes ε can be rewritten as finding a matrix R that minimizes the 
objective function O defined as: 
 

 ( )( ) ( )1)det(
2 −+−+−= RgIRRLtrRYXO T ,     [13] 

 
where g is a Lagrange multiplier, and L is a symmetric matrix of Lagrange multipliers. The second and 
third term of O represent the conditions for R to be an orthogonal and proper rotation matrix, respectively.  
Partial differentiations of O with respect to R, L and g lead to the following system of equations (96): 
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From equation [14], 
 
 CXYRM T ==          [17] 
 
where C is the covariance matrix defined in equation [10], and M is a symmetric 3x3 matrix defined by: 
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Transposing equation [17], we obtain: 
 
 TT CMR =           [19] 

and multiplying each side of [17] with each side of [19], equation [20] is obtained, as RTR=I (equation 
[15]). 
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 TT VVDCCM 22 ==         [20] 
 
Since M and M2 are commutative (MM2=M2M), both can be reduced to diagonal form by the same 
orthogonal matrix. Thus, 
 

 TVDSVM =           [21] 

 
where S = diag(si), si=1 or -1. 
 
From equation [21],  
 
 ( ) )det()det(det)det( SDVDSVM T ==       [22] 

 
and from equation [17] 
 
 )det()det()det()det( CCRM T ==        [23] 
 
as det(R)=det(RT)=1 (equation [16]). 
 
Thus, 
 
 )det()det()det( CSD =         [24] 
 
Since singular values are non negative, det(D) = d1d2d3 ≥0.  Hence det(S) must be equal to 1 if det(C) > 0, 
and -1 if det(C) < 0. 
 
From the properties of norm and trace of a matrix, we get: 
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Substituting equation [21] into equation [25], we have 
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Thus the minimum value of ε is achieved when s1=s2=s3=1 if det(C)>0, and s1=s2=1, s3=-1 if det(C)<0.  
This concludes the proof for equation [11]. 
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Next, we determine a rotation matrix R achieving the above minimum value.  When rank(C)=3, M is non 
singular, and its inverse is given by: 
 

 TTT SVVDVVSDVDSVM 1111 )( −−−− ===       [27] 

and 
 
 TTT

min USVSVVDUDVCMR === −− 11 ,      [28] 

 
which completes the proof for equation [12].  Note that this expression for Rmin is also valid when 
rank(C)=2 (see (96)). 
 
Weighted superposition of sets of points. 
 
It is not always judicious to give the same importance to all points of A and B.  This has led to a variant of 
the rigid body transformation problem, in which each point i is given a weight ωi.  Examples of weighting 
schemes include considering the mass of the atoms included in the superposition, giving different weights 
to atoms of the backbone of the protein compared to atoms of the side-chains, and giving more weights to 
atoms belonging to secondary structures of the protein.  Solving the weighted variant of the rigid body 
transformation problem amounts to finding the optimal translation T and optimal rotation R such as 
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is minimum. 
 
Considering variations with respect to T first, we find that for an extremum of ε’ , 
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so that 
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where Ω is the sum of the weights ( �
=

=Ω
n

i
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1

ω ), and µ’A and µ’B are the weighted barycenters of A and B, 

respectively. 
 
Note again that if the two sets of points are shifted such that their weighted barycenters coincide at the 

origin, Tmin=0.  Let ( )Aiii ax '' µω −=  and ( )Biii by '' µω −=  be the weighted coordinates of the 

shifted points, and X’  = [x’1,x’2,…,x’n] and Y=[y’1,y’2,…y’n] the 3xn matrices representing the two 
weighted sets of points A and B, after shifting.  The rigid body transformation problem can then be 
restated as finding the optimal rotation matrix Rmin such that 
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is minimum. 
 
Equation [32] is equivalent to equation [9], and the same algorithm described above is used to solve it. 
 
A general algorithm for point set superposition 
 
The general procedure for superposing two protein structures when the equivalent atoms are known can 
then be summarized as: 
 

1) Set input points A=(a1,a2,…an) for protein 1, B=(b1,b2,…,bn) for protein 2, and weights 
(ω1,ω2,…,ωn). 

 
2) Compute weighted barycenters of A and B:  
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3) Generate weighted covariance matrix:  
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4) Compute SVD of C’ : C’=UDVT and λ = sign(det(C’ )); note that D = diag(d1,d2,d3) with 

d1≥d2≥d3≥0. 
 
5) Define optimal rotation Rmin=USVT, with S = diag(1,1,λ), and optimal translation  
 

Tmin=µ’A – Rmin µ’B 

 
6) Compute the cRMS between the two structures: 
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Note that this algorithm does not take into account the possible presence of noise in the coordinates of the 
points.  In the case of proteins, the coordinates of atoms are approximations to a “ true” position: proteins 
are flexible, fluctuation about a mean position.  In addition, the physical experiments that provide 
information on the coordinates (usually X-ray crystallography and NMR spectroscopy) are noisy.  When 
superposing two models for the structure of one protein, the cRMS value is therefore a combination of the 
actual fluctuation between the two models, and of the noise level in the two models.  The presence of 
noise will be even more important for the superposition of two proteins that can have different lengths. 
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Protein structure superposition 
 
An ambiguous problem 
 
The problem of finding an optimal alignment between two proteins is more complex than the rigid body 
transformation problem, as the correspondence, i.e. the list of equivalent residues in the two proteins is not 
known and in fact is part of the desired output, with the optimal transformation of the position of one 
protein with respect to the other.  The protein structure alignment problem can be stated in fact as finding 
the maximal substructures of the two proteins that exhibit the highest degree of similarity. 
A “substructure” of a protein A is a subset of its points, arranged by order of appearance in A.  We denote 
the substructure defined by P=(p1,p2,…,pk) where 1≤p1<p2…<pk≤n, by A(P)=(ap1,ap2,…,apk).  The length 
|A(P)| of A(P) is the number of points it contains, i.e. k.  A “gap” in A(P) is two consecutive indices pi, 
pi+1 such that pi+1< pi+1. 
 
Protein Structure Superposition Problem: given two sets of points A=(a1, a2, …, an) and B=(b1,b2,…bm) in 
three dimensional space, find the optimal subsets A(P) and B(Q) with |A(P)|=|B(Q)|, and find the optimal 
rigid body transformation Gopt between the two subsets A(P) and B(Q) that minimizes a given distance 
metric D over all possible rigid body transformation G, i.e. 
 
 { })))(()((min QBGPAD

G
−         [33] 

The two subsets A(P) and B(Q) define a “correspondence”, and p = |A(P)|=|B(Q)| is called the 
correspondence length.  Once the optimal correspondence is defined, it is easy to find the optimal rotation 
and translation: this is the rigid body transformation problem, described in detail above.  The concept of 
optimal correspondence however requires more attention.  It is clear that p=1 defines a trivial solution to 
the protein superposition problem: any point of A can be aligned with any point of B, with a cRMS of 0.  
In practice, we are interested in finding the largest possible value for p under the condition that A(P) and 
B(Q) remain “similar” . 
 
Though significant progress has been made over the past decade, a fast, reliable and convergent method 
for protein structural alignment is not yet available (97). Recent developments have focused both on the 
search algorithm and on defining the target function to be minimized, that is, a quantitative measure of the 
“similarity”  between two structures.  The most direct approach to the comparison of two protein structures 
is to move the set of points representing one structure as a rigid body over the other, and look for 
equivalent residues.  This can only be achieved for relatively similar structures and will fail to detect local 
similarities of structures sharing common substructures.  To avoid this problem, the structures can be 
broken into fragments (usually secondary structure elements [SSEs]), but this can lead to situations in 
which the global alignment can be missed.  Recent work has focused on combining the local and global 
criteria in a hierarchical and heuristic approach.  These methods proceed by first defining a list of 
equivalent positions in the two structures, from which a structural alignment can be derived.  This initial 
equivalence set is defined by methods such as dynamic programming (98, 99), comparison of distance 
matrices (100-103), fragment matching (104, 105), geometric hashing (106-111), maximal common 
subgraph detection (112-114) and local geometry matching (115).  Optimization of this equivalence set is 
performed using dynamic programming (99, 116-118), Monte Carlo algorithms or simulated annealing 
(119), a genetic algorithm (120), incremental combinatorial extension of the optimal path (121, 122) and 
mean-field approaches (123, 124).  Excellent reviews of these and other methods can be found in refs (10, 
97, 125, 126).   
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Program Web access (Interface) Web access (program download) Method 
CE http://cl.sdsc.edu ftp://ftp.sdsc.edu/pub/sdsc/biology

/CE/src 
Extension of the optimal 
path 

DALILIG
HT 

http://www2.ebi.ac.uk/dali http://ekhidna.biocenter.helsinki.fi
:8080/dali/DaliLite/index.html 

Distance matrix alignment 

DEJAVU http://portray.bmc.uu.se/cgi-
bin/dejavu/scripts/dejavu.pl 

 Compare SSEa) 

FATCAT http://fatcat.burnham.org/fatcatpai
r.html 

 Flexible structure 
alignment based on 
fragments 

FoldMiner http://dlb4.stanford.edu/FoldMiner
/ 

 Structure-database 
comparison based on motif 
search 

K2 and 
K2SA 

http://zlab.bu.edu/k2  Genetic algorithm (K2) or 
Simulated annealing 
(K2SA) 

LOCK2 http://motif.stanford.edu/lock2/  Hierarchical protein 
structure superposition 

LSQRMS http://www.molmovdb.org/align/  STRUCTAL-based 
program 

MATRAS http://biunit.aist-nara.ac.jp/matras/  Markov transition model 
of evolution 

PRIDE http://hydra.icgeb.trieste.it/pride/  Probabilistic approach 
based on CA-CA distance 
matrix 

PRISM  http://honiglab.cpmc.columbia.edu
/ 

SSE alignment  followed 
by iterative refinement of 
the equivalence list  

PROSUP http://lore.came.sbg.ac.at:8080/CA
ME/CAME_EXTERN/PROSUP 

 Hierarchical alignment  

SARF2 http://123d.ncifcrf.gov/sarf2.html http://123d.ncifcrf.gov/sarf2.html Alignment of backbone 
fragments 

SHEBA http://rex.nci.nih.gov/RESEARCH
/basic/lmb/mms/sheba.htm 

http://rex.nci.nih.gov/RESEARCH
/basic/lmb/mms/SHEBA-
download.htm 

Hierarchical alignment 
including profiles 

SSAP http://www.biochem.ucl.ac.uk/cgi-
bin/cath/GetSsapRasmol.pl 

 Double dynamic program 

SSM http://www.ebi.ac.uk/msd-srv/ssm/ http://www.ebi.ac.uk/msd-
srv/ssm/cgi-bin/ssmdcenter 

Secondary Structure 
Matching 

TOPS http://balabio.dcs.gla.ac.uk/tops/ve
rsus.html 

http://www.tops.leeds.ac.uk/ Alignment of simplified 
representations of proteins 

TOPSCAN http://www.bioinf.org.uk/topscan  Fast alignment based on 
SSE matching 

VAST http://www.ncbi.nlm.nih.gov/Struc
ture/VAST/vastsearch.html 

 Vector alignment 

a) SSE: secondary structure elements 

 

Table 5: Web sites for publicly available protein structure alignment services and programs 
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Many groups involved in developing algorithms for protein structure alignment have generously made 
their programs available for use over the Internet and the World Wide Web. In some cases, the program 
itself is accessible for download, either as an executable or as a full source package (table 5). These are 
wonderful tools and I do encourage the reader to test several of these sites.  Many of these services have 
been tested on large datasets with known similarities (126-128).  These comparison studies do not identify 
a clear “winner” , i.e. a technique that is significantly better than the other.  In fact, it appears that a 
technique that combines existing algorithms performs better than the individual techniques (128).  In the 
following I will review the different definitions given to the similarities of two structures, and will 
describe in detail two methods for protein structure alignment, one based on distance matrices (DALI) 
(102, 129), and one based on dynamic programming and comparison of structures in coordinate space 
(STRUCTAL) (116, 117).  Finally I will describe recent progress in developing a closed form protein 
structure alignment algorithm. 
 
 
Scoring functions for protein structure superposition 
 
As the concept of “optimal”  correspondence is unclear, the protein structure superposition problem is not 
uniquely defined.  Instead, it corresponds to a family of optimization problems, which are specified by the 
weight given to the similarity (preferably a small deviation between the two subset), and the (preferably 
large) correspondence length.   
 
There are various measures of similarity between two sets of points.  In the section on rigid body 
transformation, I have mentioned the cRMS value, which measures the root mean square deviation 
between the coordinates of the points of the two sets.  For a given correspondence length, the cRMS can 
be minimized using a closed form algorithm (see above).  When both cRMS and correspondence length 
need be optimized, there are no known closed form solutions.  Approximate solutions usually based on 
heuristics do not in fact minimize the cRMS directly, as it is very sensitive to outliers (since it is based on 
the L2 norm).  For example, Levitt and co-workers (116, 117) have introduced a scoring function with a 
Lorentzian shape: 
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where the summation extends over the length of the correspondence between A(P) and B(Q), and GP,Q is 
the total number of gaps in A(P) and B(Q).  R and T are the optimal rotation and translation that achieve a 
maximum of the score (as opposed to reaching a minimum for cRMS, see equation [2]). 
 
An alternate measure of protein structure similarity is the dRMS, or distance root mean squared deviation, 
that compares corresponding internal distances in the two sets of points: 
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where p is the cardinality of the two sets. 
 
Interestingly, there is no consensus on the definition of the metric M used to compare the two internal 
distances ||ai-aj|| and ||bi-bj||. When comparing two pairs of atoms between two structures, Taylor and 
Orengo (98) defined a distance or similarity score in the form e/(D+f), where D is the difference between 
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the two intramolecular distances, and e and f are arbitrarily defined constant values. Holm and Sander 
(102 defined a similarity score as (e-[D/<D>])exp(-[<D>/f]2), where <D> is the average of the two 
intramolecular distances. Rossmann and Argos { Rossmann, 1976 #135), and Russell and Barton (130) 
used a score exp(-[D/e]2)exp(-[S/e]2), where S takes into account local neighbors for each pair of atoms.  
At this stage, there is no clear evidence as to which score performs best. 
 
All the scores cited above use geometry for the comparison, ignoring similarities in the environment of the 
residues.  Suyama et al. (131) proposed another approach in which they ignored the 3D geometry 
altogether and compared structures on the basis of 3D profiles (132) alone, using dynamic programming.  
These profiles include information on solvent accessibility, hydrogen bonds, local secondary structure 
states and side-chain packing.  Although this method is able to align two-domain proteins with different 
relative orientations of the two domains, it often generates inaccurate alignments (131).  Jung and Lee 
(133) recently improved upon this method by iteratively refining the initial profile alignment using 
dynamic programming and 3D superposition.  Their method, referred to as SHEBA, was found to be fast 
and as reliable as other alignment techniques (though it was only tested on a small number of protein 
pairs).  Kawabata and Nishikawa (134) derived a novel scoring scheme for generating structural 
alignments based on the Markov transition model of evolution.  The similarity score between two 
structures i and j is defined as log(P(ji)/P(i)), where P(ji) is the probability that structure j changes to 
structure i during evolution, and P(i) is the probability that structure i appears by chance.  The 
probabilities are estimated using a Markov transition model that is equivalent to the Dayhoff's substitution 
model for amino acids. Three types of scores were considered: a score based on accessibility to solvent; a 
residue-residue distance score; and an SSE score. 
 
Superposition based on internal distance matrices: DALI 
 
Associated with every protein chain A of n atoms is an n x n real symmetric matrix D, where D(i,j) is the 
Euclidian distance between atoms i and j of A. This matrix is the “ internal distances matrix”  of A, also 
called distance map of A.  The two representation of a protein, by the coordinates of its atoms and by its 
internal distances matrix are closely related.  Calculating the distance matrix from the coordinates is easy, 
and takes quadratic time in n.  Reversely, it is known that the coordinates of the atoms of the protein can 
be recovered from the distances matrix, using distance geometry (135, 136).  The recovered atomic 
coordinates are the original ones, modulo a rigid transformation (and possible a mirror transformation).  
This equivalence between coordinates and internal distances has lead to two different measures of protein 
similarities, each based on one of the two representations.  The use of the internal distances to compare 
protein structures has a major advantage, in that it bypasses the need to find an optimal rigid 
transformation that superposes the two structures.  As a consequence, many algorithms have been 
proposed that compare internal distances matrix to align protein structures.  The most commonly used of 
these algorithms is DALI, which is briefly described below. 
 
Holm and Sander (102) developed a two stage procedure, DALI (Distance ALIgnment algorithm) which 
uses simulated annealing to build an alignment of similar hexapeptide backbone fragments between two 
proteins. 
 
In the first stage, the two protein structures to be compared are divided into overlapping hexapeptides.  A 
contact map is generated for each hexapeptide, which contains all its internal distances. Although residues 
in the proteins belong to several overlapping hexapeptides, they are assigned to the hexapeptide with the 
closest contacts to other fragments.  Contact maps of the two proteins are matched by comparing their 
internal distances, using an “elastic”  score of the form (e-[D/<D>])exp(-[ <D>/f] 2) where D is the 
difference between the two distances to be compared, <D>  is the average distance, and e and f are 
parameters.  This score is less sensitive to distortion for long range distances.  For sake of efficiency, only 
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hexapeptide pairs having similar backbone conformation are compared.  Hexapeptides whose contact 
maps match above a given threshold are stored in lists of fragment equivalences.   
 
In a second stage, an optimization protocol based on simulated annealing explores different concatenation 
of the equivalent hexapeptide pairs.  Similarity is assessed by comparing all distances between the aligned 
substructures.  Each step consists of addition, replacement or deletion of residue equivalences (in units of 
hexapeptides).  Since hexapeptides can overlap, each step results in the addition of between one and six 
residues.  Once all candidate hexapeptide pairs have been tested, the alignment is processed to remove 
fragments with negative contribution to the overall similarity score. 
 
This method, implemented in the program DALI (129), has been used to compare representatives from all 
the non-homologous (in sequence) families in the protein data bank (3, 4).  See the section on the Dali 
Domain Classification below for details. 
 
Superposition based on cRMS: STRUCTAL 
 
The internal distances matrix is invariant under rigid and mirror transformations of the protein.  While the 
first property leads to a simplification of the protein structure superposition problem as algorithms which 
compare proteins based on internal distances do not need to find the optimal rigid transformation, the 
second property may introduce errors as mirror images (such as a right handed helix and a left handed 
helix) will not be detected as being different.  Consequently, methods have been concurrently developed 
to solve the protein structure alignment problem using coordinates to measure the similarity between two 
proteins.  These methods are based on heuristic algorithms that optimize the correspondence between the 
two proteins and the rigid transformation simultaneously.  Here I review the algorithm proposed by 
Michael Levitt, implemented in the program STRUCTAL (116). 
 
STRUCTAL starts with an arbitrary equivalence between the two proteins A and B.  This equivalence 
defines a list of corresponding residues (represented by their Cα) which are superimposed using the 
optimal rigid body transformation.  Once the two proteins are superimposed, the program computes a 
structure alignment matrix, SA.  SA(i,j) measures the similarity between residue i of protein A and residue 
j of protein B, based on a function of the distance d between Cαi and Cαj, after optimal superposition.  
This function is defined such that: 
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It is simple to compute, and has the important properties of being positive and of decreasing 
monotonically with increasing distances.  A new alignment is then determined by searching in the distance 
matrix the alignment with the best score.  Dynamics programming rapidly (O(n2) operations) find the 
optimum for the given structure alignment matrix, and a gap penalty.  The gap penalty is set constant, 
equal to 10.  This new alignment leads in turn to a new set of equivalencies between the proteins; this set 
is then used to re-superimpose the two proteins in three dimensions.  This allows the computation of a 
new structure alignment matrix, and the procedure is iterated until the alignment matrix does not change 
anymore. 
 
This structural alignment procedure based on dynamic programming is iterative, and as such may depend 
on the choice of the initial equivalence.  STRUCTAL starts with five different equivalences.  The first 
three equivalences are simple, and correspond to aligning the chain beginnings, the chain ends and the 
chain mid-points of the two structures, respectively, without allowing any gaps.  The fourth choice 
maximizes sequence identity of the pairs of residues considered equivalent, while the fifth choice is based 
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on similarity of Cα torsion angles between the two chains.  After repeating the iterative scheme of finding 
the optimal equivalence and superposition for each of the five initial set of equivalences, the optimal 
alignment is chosen as the one with the highest score.  Extensive studies have shown that no one of the 
five initial sets work better than another (117). 
 
An approximate polynomial time algorithm 
 
A prevailing sentiment in the community developing algorithms for protein structure alignment is that 
structure comparison requires exponential computer resources, and thus, investigations should concentrate 
on heuristic approaches.  As a consequence, none of the existing methods guarantees finding an optimal 
alignment with respect to any scoring function.  In addition, if one of these methods fails to find a good 
alignment, there is no guarantee that such an alignment does not exist.  There is one interesting, though 
theoretical exception: Kolodny and Linial (137) have developed a polynomial-time algorithm that 
optimizes simultaneously the correspondence and the rigid transformation that leads to a structural 
alignment.  The computation cost of their algorithm is of the order of O(n10), and, as such, it is not 
practical.  This algorithm however is not heuristic: it guarantees finding ε-approximations to all solutions 
of the protein superposition problem, where these solutions correspond to maxima of the STRUCTAL 
score ST defined in equation [34]. 
 
For an algorithm for aligning two protein structures to be polynomial, the two following conditions must 
hold: 

1) Given a rigid transformation, if should be possible to find an optimal correspondence in 
polynomial time 

2) The number of rigid transformation under consideration must be bounded by a polynomial. 
 
The STRUCTAL score ST is “separable”  and an optimal correspondence can be found using dynamic 
programming in O(n2) in time and space requirements, for any given rigid transformation r. The score of 
this optimal correspondence is denoted STopt(r).  This validates condition 1.  The validity of condition 2 is 
derived from a lemma given by Kolodny and Linial, which states that for all ε, there exists a finite set 
G=G(ε) of rigid transformation, such that for every choice of a rigid transformation r, there exists a 
transformation rG in G(ε) such that ||STopt(r)-STopt(rG)|| < ε, and cardinal(G)=|G| is polynomial in n. 
 
This lemma suggests the following algorithm for the structural alignment problem.  For a given value of ε, 
build G(ε), the discrete sampling of the space of rigid transformation, and evaluate STopt over all rigid 
transformations in G(ε).  The ε-optimal structure alignments of the two proteins are guaranteed to be 
within ε of the maxima found in the exhaustive search over G(ε).  A major advantage of this exhaustive 
algorithm is that if it fails to find a good alignment, it is certain that it does not exist.  As the size of G(ε) 
is of the order of O(n10/ε6), the computing time required by this algorithm is still prohibitive.  As such, the 
contribution of Kolodny and Linial should be viewed as mostly theoretical, rather than practical.  It does 
provide insights however on the complexity of protein structure alignments. 
 
 
cRMS: an ambiguous measure of similarity 
 
Though most of the algorithms for protein structure alignments use scoring schemes that differ 
significantly from simply taking into account interatomic distances (see above), the root mean square 
deviations (cRMS or dRMS) remain the measures of choice to describe the similarity between two 
proteins.  Both cRMS and dRMS are based on the L2-norm (i.e. the Euclidian norm) and, as such, they 
suffer from the same drawback as the residual, 2, in least-squares minimization: the presence of outliers 
introduces a bias in the search for an optimal fit and the final measure of the quality of the fit may be 
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artificially poor because of the sole presence of these outliers.  Another problem of RMS is that it does not 
always satisfy the triangular inequality.  More precisely, the triangular inequality is satisfied when the 
correspondences between the proteins always involve the same points (138).  In general however, with 
varying correspondences it is possible to build a case where the triangular inequality is not satisfied.  
Consider for example two proteins A and B that are dissimilar, and the two-domain protein C, whose sub-
domains C1 and C2 are strongly similar to A and B, respectively.  In this example, the RMS values 
between A and C and between B and C are low, but the RMS between A and B is large, violating the 
triangular inequality that would have stated that RMS(A,B) ≤ RMS(A,C)+RMS(C,B).  As a consequence 
of these limitations, RMS is a useful measure of structural similarity only for closely related proteins 
(139).  Several other measures have therefore been proposed to circumvent these problems.  The 
STRUCTAL score S2 (equation [35]) was defined as a more reliable indicator of structure similarity than 
RMS because it depends most strongly on the best-fitting pairs of atoms (thereby removing the weights of 
outliers), whereas RMS gives equal weight to all pairs of atoms.  Interestingly, Lesk (140) recently 
proposed replacing the L2-norm in the RMS definition by the L norm, also called the Chebyshev norm, 
yielding a new score: 
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S reports the worst-fitting pair of atoms (after optimal superposition of the two structures) and, as such, is 
even more sensitive to outliers than the RMS.  Yang and Honig (118) defined a new protein structure 
similarity measure, the protein structural distance (PSD).  PSD combines a secondary structural alignment 
score and the RMS deviation of topologically equivalent residue pairs.  It thus incorporates the resolution 
power of both RMS for closely related structures and the secondary structure score for proteins that can be 
very different.  By analyzing the PSD scores obtained from more than one and a half million pairs of 
proteins, Yang and Honig (118) proposed that there is a continuous aspect of protein conformation space, 
in apparent disagreement with structural classification databases such as SCOP (Structural Classification 
Of Proteins (141)) and CATH (Class, Architecture, Topology and Homologous Superfamilies (79)).  May 
(142) assessed 37 different protein structure similarity measures in terms of their robustness in generating 
accurate clusters in a hierarchical classification of 24 protein families.  It was found in this study that the 
sum of ranks of distances at aligned positions was a better measure than the direct sum of distances and 
that RMS computed over the subset of core-aligned positions performs better than normal RMS.  
Variations in the hierarchical classification of protein structures raise the question of the validity not only 
of the measure used for the clustering, but also of the hierarchical clustering itself.  The difficulty of 
defining a similarity score between protein structures is most probably a reflection of the fact that the 
problem of structure comparison does not have a unique answer (143-145).  This could also reflect the fact 
that the problem is ill posed and that additional information is required to characterize a problem with a 
well-defined solution.  For example, in fold recognition applications, predictors will focus on the well-
conserved core region of the protein and pay less attention to the loop geometry.  In such cases, it makes 
sense to define a similarity score that only includes atoms in the core. 
 
A quantitative measure of the similarities of protein structures is essential for a critical assessment of the 
quality of protein structure predictions, such as those generated for CASP (a community-wide experiment 
on the Critical Assessment of techniques for protein Structure Prediction, organized in the form of a 
meeting held in alternating years at Asilomar, California).  In the special case of comparing a predicted 
structure with the corresponding experimental structure, the equivalence list is known because the two 
sequences are identical, which reduces the complexity of the problem.  On the other hand, each prediction 
may omit different residues and different parts of the structure may have different accuracies.  Hubbard 
(146) solved the problem by generating a large number of superpositions and calculating the best RMS for 
each number of equivalent residues (not necessarily contiguous).  The result is the RMS/coverage graph, 
which was used for the evaluation of predictions at CASP3.  This plot can also be interpreted as defining 
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the number of equivalent residues for a given RMS value (the Adam Zemla's global distance test, GDT, 
used in CASP4). 
 
 
Differential geometry and protein structure comparison 
 
The inherent problems of RMS as a measure of protein structure similarities, and the difficulties 
encountered by the existing heuristic algorithms whose aim is to solve the protein structure superposition 
problem have lead to the development of a new approach for comparing protein structure, based on 
differential geometry and the concept of protein shape descriptors.  The idea behind this approach is 
relatively simple: represent the protein structure with a vector of geometric properties, GP, such that the 
comparison of two protein structures is performed through a comparison of their GP vectors, usually using 
a Euclidian metric.  Once the GP vectors have been computed, structure comparison using this scheme 
becomes instantaneous, and can then be performed over whole databases.  Success of this approach 
obviously depends on the quality of the geometric properties included in GP, and their ability to uniquely 
capture the geometric properties of the protein.  There has been a growing interest in the recent years to 
define such protein shape descriptors.  Here I briefly review two descriptors derived from knot theory, 
namely the writhe and the radius of curvature of a polygonal curve. 
 
 

The writhe of a protein chain 
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Figure 8: Computing W(i1,i2), the writhe of two segments i1 and i2.  The two segments i1 and i2 generates a 
parallelogram P of directions, with vertices d1, d2, d3 and d4.  The area A of the projection of P on the surface of the 

unit sphere is the segment-segment writhe W(i1,i2).  A is easily computed as: παααα 24321 −+++=A . 

 
Geometrically, the writhe of a polygonal curve is the signed average crossing number of the curve, where 
the average is taken over the observer’s positions, located in all space directions.   
Consider a polygonal curve A defined by N line segments i.  The writhe of A is computed according to:  
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where W(i1,i2) is the contribution to writhe of the line segments i1 and i2. W(i1,i2) is the probability to see 
the line segments cross from an arbitrary direction multiplied by the sign of the crossing.  Computation of 
W(i1,i2) is described in figure 8.  Similarly, the unsigned average number of crossing, usually referred to as 
the average crossing number, is given by: 
 

 �
<<<

=
Nii

iiWAI
210

212,1 ),()(         [40] 

 
A whole family of structural measures can be build using W(i1,i2) and | W(i1,i2)| as building blocks (147), 
such as: 
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These measures are inspired from the Vassiliev knot invariants (148).  They form a natural progression of 
curve descriptors, much as moments of inertia and their correlations define solids.  
 
The writhe and the average crossing number have been used extensively to characterize DNA molecules, 
and more specifically supercoiled DNAs (149, 150).  They have also been used to describe proteins.  
Levitt (151) has used writhe to distinguish different chain threading.  Arteca and co-workers used the 
writhe as a protein shape descriptor (152-156). Rogen and Bohr (147) have used the writhe, the average 
crossing number and their higher order correlations to define a feature vector that characterize protein 
structures.  More recently, Fain and Rogen (157) have compared protein structures using feature vectors in 
ℜ30 similar to those defined by Rogen and Bohr, and a pseudo metric, which is simply the Euclidian 
distance between the feature vectors.  This pseudo metric is name SGM for scaled Gauss metric, as the 
writhe of a continuous curve is usually computed using a Gauss integral (158).  Fain and Rogen (157) 
show that SGM performs extremely well as a protein structure classifier, using both CATH and SCOP as 
test sets.  As both CATH and SCOP include all protein chains in the PDB, they are highly redundant and 
can not be considered as discriminative benchmarks.  Despite this reserve, the results of Fain and Rogen 
are very promising, and open the door to a new way to compare and classify protein structures, using 
geometric protein shape descriptors. 
 
 
Thickness and generalized radius of curvature of a protein chain 
 
Any smooth, non-intersecting curve can be thickened into a smooth, non intersecting tube of constant 
radius centered on the curve.  If the curve is a straight line, there is no upper bound for the radius, but for 
any other curve, there is a critical radius above which the tube ceases to be smooth, or shows self contact.   
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Figure 9:  Thickness of a protein.  (A) The structure of the B1 immunoglobulin-binding domain of streptococcal 
protein G (PDB code 1pgb) is visualized as a thin tube.  (B) View of the same tube for 1pgb inflated to its 
“ thickness”, i.e. to a radius above which the tube ceases to be smooth, or shows self contact.  Note that there is no 
free space between consecutive turns of the helices.  Figure 9A drawn with MOLSCRIPT (14) and 9B with VMD 
(15). 
 
This critical radius is referred to as the thickness of the curve, and it is used as a shape descriptor in knot 
theory.  As the geometry of both DNA and protein molecules is characterized by the geometry of their 
chain, it is quite natural to check if thickness can be used as a descriptor of the shape of these molecules.  
This was pioneered by Gonzales and Maddocks (159), who introduced the concept of generalized radius 
of curvature, and applied this concept to characterize the geometry of DNA molecule.  Their definition of 
generalized radius of curvature is based on the fact that any three non collinear points x, y, z in three 
dimensional space define a unique circle whose radius is given by: 
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where A(x,y,z) is the area of the triangle whose vertices are x,y and z and |x-y| is the Euclidian distance 
between x and y.  Let us consider a discrete curve C, defined by n nodes (c1,c2,…cn). Gonzales and 
Maddocks define the generalized radius of curvature of C at ci by: 
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ρC(ci) is the radius of the smallest circle passing by ci and two other distinct nodes of C.  ρC(ci) should be 
distinguished from the local radius of curvature ρ defined at ci by ρ(ci)=ρ(ci-1,ci,ci+1).  The thickness ∆(C) 
of the discrete curve C is related to the generalized radius of curvature by: 
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In other words, ∆(C) is the radius of the smallest circle passing by three points of C. 
 
Figure 9 illustrates the “ thickness” of a small globular protein.  The concepts of thickness and generalized 
radius of curvature have been applied to the characterization of the geometry of DNA molecule (149, 
150).  They have also been used as basis for a “potential”  that captures the geometry of a protein (160-
164), which has been used for example in protein structure prediction computer experiments (165).  They 
have not yet been used for protein structure comparison, but it is expected that they would prove quite 
useful for detecting protein structure similarities, when combined to other features such as writhe. 
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Upcoming challenges for protein structure comparison? 
 
The most difficult application of protein structure comparison arises in the classification of the known 
protein structures into different clusters corresponding to fold families.  The role of such classifications is 
to rationalize the organization of the protein structure databases such as the PDB, in hope to detect 
similarities at the structure level that could not be detected at the sequence level, and more generally to 
detect evolutionary relationships between proteins.  The existing protein structure classifications are 
reviewed in the next section.  The challenges met by a protein structure comparison program in this 
application are multiple.  Firstly, it must be able to deal with different levels of structural similarities, must 
identify similarities even when these form a small proportion of the proteins being compared, and must be 
able to handle insertions of arbitrary size as well as permutations of substructures.  Secondly, it must deal 
with the fact the there may be more than one acceptable solution for the structural alignment of two 
proteins.  These multiple, equivalent solutions in terms of cRMS and length of the equivalence may all be 
viable from a biological perspective (166), and therefore cannot be ignored.  Thirdly, the size of the 
protein structure databases has experienced exponential growth in the recent years, and the growth rate is 
expected to increase as the structural genomics projects enter their productive phases.  This generates the 
need for fast techniques to compare and classify these structures, faster than the existing techniques that 
are usually time consuming. 
 
None of the existing methods, including those described in length above, propose solutions to all these 
challenges.  Heuristic methods were developed for sake of efficiency; there is no guarantee however that 
they find the optimal superposition.  Some of these methods also cannot detect alternative, equally 
acceptable solutions.  The approximate solution developed by Kolodny and Linial (137) solves some of 
these issues in the sense that it is able to detect all maximal solutions with an ε of the optimal solutions, 
but its computing cost (of the order of O(n10/ε6) where n is the size of the proteins considered) makes it 
unusable for large scale comparisons.  There is therefore still a need to develop faster, robust and 
exhaustive approaches to the problem of protein structure comparison.  This field in fact remains an active 
area of development in structural biology.  Solutions may in fact come from interdisciplinary research.  
The problem of comparing two protein structures can be reformalized as the problem of comparing two 
sets of points in 3D space.  As such, it can be seen as a problem of computational geometry, and it is 
expected that collaboration between structural biologists well versed in deciphering protein structures and 
computer scientists who focus on geometric problems should provide the synergy required for significant 
progress.  The recent advances in the application of differential geometry to protein structure (see the 
sections on writhe and curve thickness above) are signs that these collaborative efforts are building up. 
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Protein structure classification 
 

In 1960 Perutz et al. (26) showed that myoglobin and hemoglobin, the first two protein structures to be 
solved at atomic resolution using X-ray crystallography, have similar structures even though their 
sequences differ.  These two proteins are functionally similar, as they are involved with the storage and 
transport of oxygen, respectively.  Since then, there has been a continuing interest in finding structural 
similarities between proteins, in hope of revealing shared functionality that could not be detected by 
sequence information only.  A logical consequence of this interest is the development of systems of 
classification of protein structures, whose aims are centered on the identification and regrouping of 
proteins sharing the same structure, in hope to reveal evolutionary relationships.  Classifying protein 
structures has now become essential as the volume of structural data available grows exponentially (see 
figure 10).  Note that in parallel to protein structure classification, there are many classifications of protein 
sequences available.  I will not review those, as they are described in length in (167).  For sake of 
completeness, I list in table 6 some of the resources available for sequence classification. 
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Figure 10: Statistics on the PDB. The number of structures (proteins and nucleic acids) available in the Protein Data 
Bank (PDB) (3, 4) is plotted versus time, starting from 1973 when the PDB was created. 
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Scheme Description Web access 
PFam Domain-level classification of 

protein sequences 
http://www.sanger.ac.uk/Software/Pfam/ 

PRINTS Fingerprints information on 
protein sequences 

http://www.bioinf.man.ac.uk/dbbrowser/PRINTS/ 

PROSITE Sequence motif definition http://www.expasy.org/prosite/ 
TIGRFAMS Protein family database http://www.tigr.org/TIGRFAMs/ 
PRODOM Protein domain database http://protein.toulouse.inra.fr/prodom.html 
BLOCKS Multiple-alignment blocks http://blocks.fhcrc.org/ 
eMOTIF Protein motif database, derived 

from PRINT and BLOCKS 
http://motif.stanford.edu/emotif/ 

CluSTr Clusters of related proteins http://www.ebi.ac.uk/clustr/ 
COGS Clusters of orthologous groups http://www.ncbi.nlm.nih.gov/COG/ 
ProtoMap Hierarchical classification of 

protein sequences 
http://protomap.cornell.edu 

TRIBES Protein family databases http://maine.ebi.ac.uk:8000/services/tribes/ 
PIR international Protein sequence databases http://pir.georgetown.edu/ 
SYSTERS Protein family database http://systers.molgen.mpg.de/ 
SMART Small motif database http://smart.embl-heidelberg.de/ 
UniProt Catalog of information on proteins http://www.expasy.uniprot.org/ 
InterPro Databases of protein families and 

domains 
http://www.ebi.ac.uk/interpro/ 

 

Table 6: Resources for classification of protein sequences 

 
All current structural classification of proteins are based on the same scheme: protein structures are first 
divided into discrete, globular domains, which are then classified at the levels of “class”, “ folds”, 
“ superfamilies”  and “ families” ; the differences arise from the methods used to define the domains, and on 
the procedures used to classified.  After reviewing all the terms that define a classification, I will describe 
in details the three main protein structure classifications available, SCOP, CATH, and the DALI Domain 
Dictionary (DDD).  Links to these databases and related services are listed in table 7. 
 
 

Scheme Description Web access 
SCOP Structural Classification 

of Protein: manual 
http://scop.mrc-lmb.cam.ac.uk/scop/index.html 

CATH Class, Architecture, 
Topology, Homology: 
semi-automatic 
classification of proteins 

http://www.biochem.ucl.ac.uk/bsm/cath 

Dali Fold Classification Automatic classification 
of DALI domain using 
Dali. Supersedes FSSP 

http://www.bioinfo.biocenter.helsinki.fi:8080/dali/index.html 

Astral Databases and tools for 
analyzing protein 
structure; derived from 
SCOP 

http://astral.berkeley.edu/ 

HOMSTRAD Aligned 3D structures of 
homologous proteins 

http://www-cryst.bioc.cam.ac.uk/data/align 

 

Table 7: Resources for protein structure classifications 
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The first complication for structure classification is the fact that protein structures are often composed of 
distinct globular domains.  Because these domains can function individually, with distinct functional roles, 
proteins are usually separated into domains prior to classification.  The identification and delineation of 
these domains is still an open problem, which was discussed in length in the section on protein domain 
above.  It is important to realise that the existing algorithms for domain identification do not always agree.  
The corresponding discrepancies in domain definition translate into differences between structural 
classifications that do not share the same definition. 
 
Once proteins are divided into domains, the later are then classified hierarchically.  At the top of the 
classification, we usually find the “classes”.  The “class” of a protein domain is generally determined from 
its overall composition in secondary structure elements.  There are three main classes of proteins, namely 
mainly α proteins, mainly β proteins, and mixed α - β proteins (the proteins in the α−β class are 
sometimes subdivided into proteins with alternating α/β secondary structures, and proteins with mixed 
α+β secondary structures).  In each class, proteins are subdivided according to their topology into ‘ folds’ .  
A ‘ fold’  is determined from the number, arrangement and connectivity of its secondary structure elements.  
The folds are themselves subdivided into ‘superfamilies’ .  A superfamily contains protein domains with 
similar functions, suggesting common ancestry, often in the absence of detectable sequence similarity.  
The later is used to define ‘ families’ , i.e. sub-classes of superfamilies that regroup domains whose 
sequences are similar. 
 
Classification schemes can be divided into curated, and automatic.  A curated classification is based on 
human expertise, sometimes guided by computer analyses, to identify similarities between protein 
structures and organize them into groups. An automated classification relies on the results of the execution 
of a computer procedure to identify the similarities, which are subsequently processed automatically to 
generate the groups.  One advantage of curation is the usual high quality of the clustering; the 
disadvantage is that it is difficult to scale to high volumes of data.  Conversely, automatic procedures are 
fully reproducible and scalable, but may generate inaccurate assignment of similarity.  The three main 
protein structure classifications illustrate these differences: SCOP is almost completely manually derived, 
the DALI domain dictionary is based on a fully automated procedure, and CATH is intermediate, using 
automated procedures complemented with human interventions. 
 
 
 
The Structure Classification Of Proteins (SCOP) 
 
SCOP (141) organizes protein structures hierarchically, to reflect both structural and evolutionary 
relatedness.  SCOP has been constructed manually, from the delineation of the domains in multi-domain 
proteins to the organization of the levels of the hierarchy by visual inspection and comparison of protein 
structures, with the assistance of some automatic computer tools to make the task manageable and help 
provide consistency and generality.  Since its creation in 1994, SCOP has been regularly updated, with an 
average frequency of two releases a year.  The latest update of SCOP, 1.65 was built from the 20,619 PDB 
entries (54745 domains) available on August 1st, 2003, and was released in December 2003.  Statistics on 
the growth of SCOP are given in figure 11. 
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Figure 11: Statistics of the SCOP classification of proteins.  The numbers of folds, superfamilies and families in 
SCOP are plotted versus “time”, where time is the timestamp of the PDB used to generate the update of SCOP. 
 

SCOP is a hierarchic classification, with four major levels, namely classes, folds, superfamilies and 
families, described below.  As recognized by the authors of SCOP, the exact positions of boundaries 
between these levels are to some degree subjective.  Where any doubts of similarity existed, they have 
chosen to create new divisions at the family and superfamily levels. 
 
At the top of the hierarchy are 11 different classes: alpha, beta, alpha and beta (α/β), alpha plus beta 
(α+β), multi-domain proteins, membrane and cell-surface proteins, small proteins, coiled coil proteins, 
low resolution protein structures, peptides, and designed proteins.  Note that only the first seven classes 
are true classes.  The remaining ones serve as place holders for protein domains that could not (yet) be 
classified among the major classes, and are maintained in SCOP for sake of completeness and 
compatibility with the PDB.   
 
SCOP folds identify structural similarities.  Proteins share a common fold if they have the same major 
secondary structures in the same arrangement and with the same topological connections.  Proteins with 
the same fold may differ at the level of their peripheral elements, which can include secondary structures 
and turn regions.  Note that these peripheral elements can represent up to 50% of the structure.  Proteins 
placed together in the same fold may have no common evolutionary origin. 
 
SCOP superfamilies identify probable common evolutionary origin.  Proteins whose sequences have low 
similarities, but who share the same fold and have similar functions, suggesting that a common 
evolutionary origin is probable, are placed together in superfamilies. 
 
Proteins clustered together into families are clearly evolutionary related.  In general, the sequences of two 
proteins placed in the same family have a residue identity greater than 30%.  In some cases, a high 
sequence identity is not need to affirm common origin: many globins form a family, even though some of 
the members of that family have sequence identity of only 15%. 
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The CATH classification. 
 
CATH (79) clusters protein domains at four major levels: Class (C), Architecture (A), Topology (T), and 
Homologous superfamily (H), described below.  CATH is derived from a semi-automatic procedure.  
CATH filters out non-protein, models and “C-alpha only”  structures from the PDB.  Only crystal 
structures solved to resolution better than 3.0  are considered, together with all NMR structures.  The 
latest update of CATH, v2.5.1, was released January 28th, 2004 and includes 48,391 domains. 
Multi-domain proteins are subdivided into domains using a consensus procedure, based on three 
algorithms for domain recognition, DETECTIVE (78), PUU (73) and DOMAK (73).  When all three 
algorithms agree on a protein, the common solution is used to delineate the domains of that protein.  This 
procedure allowed 53% of the proteins included into the CATH release 2.5.1 to be subdivided into 
domains automatically.  The remaining structures are assigned domains manually, using one of the 
assignments made by the automatic procedure, an assignment obtained from the literature, or a new 
assignment defined by visual inspection. 
 
CATH includes 4 classes (C): alpha, beta, alpha and beta, and few secondary structures.  The alpha-beta 
class includes both alternating alpha/beta structures and alpha+beta structures, originally defined by Levitt 
and Chothia (27).  The class of a protein domain is determined according to its secondary structure 
composition and packing.  In release 2.5.1 of CATH, it is assigned automatically for over 90% of the 
domains, using the method developed by Michie et al (168, 169).  The 10% remaining domains are 
assigned to a class using visual inspection. 
 
The architecture (A) level included in CATH describes the overall shape of the domain structures, as 
determined by the orientation of their secondary structures, ignoring their connectivity. It is assigned 
manually.  This level has no equivalent in SCOP. 
 
Domains are grouped into topologies (T), or fold families, according to their overall shape and the 
connectivity of their secondary structures.  This is done using the structural alignment program SSAP 
(98).  Proteins belonging to the same class are compared systematically using SSAP, and the 
corresponding scores are stored in a two-dimensional matrix.  Structure pairs that have a sufficiently high 
SSAP score (>70) are merged into fold families, using single linkage clustering (for a brief description of 
this clustering technique, see appendix).  
 
The Homologous Superfamily level, or H level, groups together protein domains which are thought to 
share a common ancestor.  This level is equivalent to the superfamily level defined in SCOP. 
CATH also includes a S level, or Sequence Families level, which is equivalent to the family level of 
SCOP. 
 
 
The DALI Domain Dictionary 
 
The DALI Domain Dictionary, also called DALI domain classification is derived from a fully automated 
method of defining and classifying domains ((170), Dietmann and Holm (171).  DALI domains are 
defined by a version of the PUU algorithm (73) that has been updated to consider the recurrence of 
putative domains (172).  Structural similarities between domains are defined by the program DALI (see 
the section on DALI above for an overview of that program).  When comparing two protein structures, 
Dali computes a similarity measure, or S score.  The mean and standard deviations of the S scores 
obtained over all the pairs of proteins are evaluated. Shifting the S scores by their mean and rescaling by 
the standard deviation yield the statistically meaningful Z-scores. 
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The program DALI was initially used to create the FSSP database (173). FSSP is known as “Families of 
Structurally Similar Proteins”.  In FSSP, pair-wise structural comparisons are made between proteins of a 
representative set, where no two proteins have greater than 25% sequence identity.  For each member of 
the representative set, a file a created that contains all pair-wise structural matches with a Z-score greater 
than 2.0. 
 
The same procedure was extended to generate a complete classification of all protein domains in the 
PDB90 database, the DALI Domain Dictionary or DALI Domain Classification (171).  PDB90 is a 
representative subset of the PDB, where no two chains share more than 90% sequence identity.  An 
average linkage hierarchical clustering technique (see appendix) was used to generate a fold tree covering 
the PDB90 database.  The pair-wise structural alignments are divided using Z-score cutoffs of 2, 4, 8, 16, 
32 and 64, creating a six-character index for each domain.  The first level (Z>2) is used as an operational 
definition of folds.  Lower levels should not be confused with the superfamily and family levels of CATH 
and SCOP, as they are not based on direct functional or evolutionary relationships. 
 
Both FSSP and the DALI Domain Dictionary are continuously updated; this is set up easily, as they are 
both derived from a fully automated procedure. 
 
 
Comparing SCOP, CATH and DDD 
 
Despite differences in the classification methods they have implemented, and in the rules of protein 
structure and taxonomy they are based on, SCOP, CATH and DDD agree on the majority of their 
classifications.  Hadley and Jones (174) were the first to publish a detailed comparison of the fold 
classifications produced by SCOP, CATH and FSSP.  They showed that the three classification systems 
tend to agree in most cases, and that the discrepancies and inconsistencies are accounted for by a small 
number of explanations.  Among these, the domain assignment plays a crucial role.  As mentioned above, 
the separation of proteins into domains is a difficult and often subjective process. Many protein structures 
are assigned different numbers of chains in SCOP, CATH and FSSP.  An obvious domain problem that 
results in differences in classification is the exclusion of one part of a protein. Hadley and Jones (174) 
reports the case of papain (PDB code 1ppo), a cysteine proteinase from papaya, which was treated as a 
single domain by SCOP, leaving the catalytic cysteine, histidine and asparagines together to form the 
active site, while CATH splitted the protein into two domains, separating the cysteine from the asparagine 
and histidine, and rendering each domain effectively functionless.  Note that this difference has been 
corrected since Hadley and Jones published their study, and papain is now a single domain in CATH.  
Another discrepancy between the structural classifications arises from the ‘ fold overlap’  problem, where a 
fold within one classification encompasses more than one fold within another classification.  When a 
domain is classified within CATH as a three layer (αβα) sandwich Rossmann fold, there are several 
SCOP folds to which it could conceivably belong: although the structures are geometrically similar, SCOP 
can separate them to reflect an evolutionary distinction.  This is observed for example for the protein 1phr, 
and the chain A of the proteins 1gar and 1lfa, corresponding to a phosphotyrosine protein phosphatase, a 
formyltransferase and an integrin, respectively.  All three structures contain a three layer sandwich 
Rossmann fold and consequently regrouped in the same Topology in CATH (3.40.50), while they are 
representatives of their own fold class in SCOP (c.44, c.65 and c.62, respectively). 
 
Despite these discrepancies, Hadley and Jones (174) recognize the merits of all three classifications, and 
conclude that no one method is distinctly superior.  They characterize SCOP as a valuable resource for 
detailed evolutionary information, CATH as a source of geometric information, and FSSP as a raw source 
of information, continually updated. 
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Divergences in protein structure classifications have triggered the search of a consensus description of the 
protein structure space.  Day et al (175) recently repeated the comparative study of SCOP, CATH and 
DDD, based on updated versions of the classifications compared to Hadley and Jones’  work.  While Day 
et al find significant levels of agreement between the three classifications, they highlight disparities whose 
origins are similar than those found earlier.  To average out these disparities, they have introduced the 
concept of consensus folds.  They start from a non redundant subset of protein domains.  To be 
considered, 80% of the sequence of a domain in SCOP must be present in a DALI domain definition, 80% 
of the DALI domain must be present in the SCOP definition, and so on for the other pair-wise 
combinations of the classification systems.  Redundant domains were considered to be those having >95% 
sequence identity to a previously counted domain.  Each domain in the non redundant subset is assigned a 
fold identifier, corresponding to its classifications in SCOP, CATH and DDD.  Domains are then clustered 
on the basis of their fold identifiers, and the corresponding clusters are referred to as metafolds.  The non 
redundant set contained 5720 domains, clustered into 1130 metafolds.  About half of these domains are 
described by one of the top 30 metafolds.  These metafolds represent the consensus information contained 
in SCOP, CATH and DDD, and, as such define a consensus view of the protein fold space. 
 



41 

Conclusions 
 
Proteins are the key molecules to all cellular functions.  Nature has extensively explored their sequences 
and structures in order to build the library of functions needed for the diversity of life, taking into account 
all external constraints and the corresponding adaptation.  The wealth of information encoded in the 
diversity of protein sequences and structures therefore provides invaluable clues to unravel the mysteries 
of life and its evolution and adaptation over time.  This opportunity has become a leitmotiv in recent 
genetics and molecular biology studies, crystallized by the development of numerous genomics and 
structural genomics projects.  At time of writing, more than 220 whole genomes have been sequenced and 
published on the world wide web, and more than 1200 are currently under studies, corresponding to 
databases of more than one million non redundant protein sequences.  In parallel, the protein structure 
database contains structural data on more than 27000 proteins.  The challenge now is to organize all these 
data in a way that evolutionary relationship between proteins can be uncovered and used to understand 
better protein function.  The past few years have seen an explosion of techniques in “bio-informatics”  for 
organizing and analyzing protein sequence families.  While such approaches detect homologous proteins, 
they usually fail to detect remote homologues, i.e. pairs of proteins that have similar structure and 
function, but lack easily detectable sequence similarity.  As protein structures are more highly conserved 
than sequences, there is a growing interest in studying evolution based on an understanding of the protein 
structure space.  The first steps common to the analysis of any large set of data are to group together data 
points that are similar, and identify connections between the elementary groups.  These steps are usually 
performed using classification techniques.  In the case of protein structures, this has lead to the 
construction and maintenance of protein structure classifications, which I have reviewed in this survey. 
 
Reliable protein structure superposition remains a bottleneck when building a protein structure 
classification.  Comparing and grouping proteins require a definition of the similarity of two structures.  
Similarity in structural alignment is geometric and captured by the cRMS deviation of the aligned atoms.  
Other properties of structural alignments that are likely to be significant are the number of positions 
matched, and the number and length of gaps.  Clearly, better alignments match more positions, have fewer 
gaps and are more similar.  Since these properties of alignments are not independent (shortening the 
alignment or introducing many gaps can lower the cRMS), researchers have devised alignment scores that 
attempt to balance these values. Several measures of similarity have consequently been developed (142).  
Perhaps the most significant recent improvements in this area have been in the protocol assessing the 
statistical significance of these measures (117, 176)).  These measures of similarity are used in structure 
comparison algorithms.  Ideally, these methods should detect reliably distant relatives, and be fast enough 
to scan large databases of representative protein structures.  Existing methods have been designed to 
satisfy one, but not these two criteria (see section on protein structure superposition).  There is therefore a 
need for a fast, reliable protein structure superposition program. 
 
Critical to the classification of proteins is the definition of domains.  It has long been hypothesized that 
domains are the important evolutionary units.  This is supported by recent analyses of the available 
genome data, which suggest that at least 60% of the genes are multi-domain proteins (177-179).  Domain 
duplications and recombination are thought to have occurred extensively.  Protein structure classifications 
are consequently domain based, and only contain multi-domain proteins when the domains of the later 
have not yet been assigned.  Automatic recognition of domains in multi-domain proteins can be very 
difficult, although many promising approaches have been developed (see section on protein domain 
above).  These methods do not always agree in their domain assignments; this leads to discrepancies 
between the existing protein structure classifications (174, 175). 
 
The three major protein structure classifications are SCOP, CATH, and DDD.  SCOP is derived manually, 
and is recognized as a valuable resource of detailed evolutionary information.  CATH provides useful 
geometric information.  It also introduces the concept of “architecture”, which reveals broad features of 
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the protein structure space.  CATH relies on partial automation, and as such is subject to inaccuracies 
introduced by fixed thresholds.  The DALI Domain Dictionary, DDD, is a fully automatic classification 
continually updated.  It is not as popular as SCOP and CATH, probably because its automatic levels are 
not as intuitive and require more input from the users to be interpreted. 
 
Protein structure classifications need to be integrated with the other genome databases under 
constructions.  Currently, SCOP, CATH and DDD are valuable resources mostly for benchmarking of 
methods, and for structural studies.  Their impact in biology in general will be far greater when they will 
be integrated with sequence and function information, in order to present a cohesive picture of the 
different protein spaces. 
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Appendix: Hierarchical clustering. 

 
The aim of clustering is to group a collection of objects (or observations) into subsets of “clusters” , such 
that those within each cluster are more similar to one another than objects assigned to different clusters.  
There are two main elements in any clustering technique: the definition of similarity, or dissimilarity 
between objects, and the algorithm used to partition the data into clusters.  Here I assume that the 
similarity is known, and encoded into a distance d between the objects.  There are two major types of 
algorithm for portioning objects: k-means clustering, and hierarchical clustering.  I focus on the latter. 
In hierarchical clustering, the data are regrouped into clusters through a series of partition, which can run 
from a single cluster containing all n objects, to n clusters each containing a single object.  Hierarchical 
clustering techniques are subdivided into two groups: agglomerative methods, which proceed by series of 
fusions of the objects into groups, and divisive methods, which separate the objects successively into finer 
groupings.  Again, I only focus on agglomerative methods, as these are the ones used for generating 
protein structure classifications. 
 
An agglomerative hierarchical clustering technique proceeds through a series of partitions of the n data, 
Pn, Pn-1,…, P1, such that Pn consists of n clusters each containing a single object, and P1 consists of a single 
group containing all n objects. At each stage, the procedure joins together the two clusters that are closest 
together.  Differences between methods arise because of different ways of defining the distance between 
clusters.  The four main agglomerative hierarchical clustering techniques are: 
 

- Single linkage clustering: the distance between two clusters A and B is defined as the distance 
between the closest pair of objects, where only pairs consisting of one object from each cluster are 
considered: 
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- Complete linkage clustering: the distance between two clusters A and B is defined as the distance 

between the most distant pair of objects, one from each cluster: 
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- Average linkage clustering: the distance between the two clusters A and B is defined as the 
average of distances between all pairs of objects, where each pair is made up of one object from 
each cluster: 
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 where NA and NB are the sizes of A and B, respectively. 
 

- Average group linkage: the distance between the two clusters A and B is defined as the average 
of distances between all pairs of objects included in the union of A and B. 
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There is unfortunately no answer to the question on which of these techniques performs best.  Clustering 
is an exploratory data analysis procedure.  The choice of the actual technique used for clustering often 
comes from a very good understanding of the objects to be clustered. 
 
 


