
Python Primer

Patrice Koehl
Department of Computer Sciences, University of California, Davis.

Acknowledgments:

This primer is mostly a compilation of information found in books / web resources that I highly
recommend:

- http://docs.python.org/reference/introduction.html ; this is a reference manual, and not a
tutorial, but provides invaluable information about the language: do not hesitate to
consult it!

- http://wiki.python.org/moin/BeginnersGuide ; a Beginner’s guide with many links to
resources for writing and running Python programs

- Michael Dawson, “Python programming for the absolute beginner”, 2nd edition,
Thomson Course Technology, ISBN: 1-59863-112-8; this is the class textbook; a great
resource book on Python

Introduction

1. Why Python?

“Python” is an interpreted computer language developed in the 1980s and first released in 1991.
Its design philosophy emphasizes programmer productivity and code readability.

It is important to understand that there is always more than one way to solve a problem. In
programming, Python focuses on getting the job done. One Python program may be faster than
another, or more concise, or easier to understand, but if both do the same things, there won’t be a
judgment that defines which one is “better”. This also means that you do not need to know every
detail about the language to do what you want with it.

Python has strength that makes it an ideal language to learn and use:

- It is completely free, and available on all operating systems
- It is very easy to learn
- Python was designed to be easy for humans to write, rather than easy for computers to

understand. Python syntax is more like English than many other programming languages
- Python “talks” texts. It works with words and sentences, instead of characters. Files are

series of lines, instead of individual bytes.
- Python is very portable. Python programs can be run on any computers, as long as Python

is installed on it.
- Python is a “high-level” language: you do not have to worry about the computer’s

operation (such as allocation and de-allocation of memory, …).

It is only fair to mention that these strengths can also translate into weaknesses:

- Python takes care for you of all “low-level” operations: this may not always lead to
efficient code

- Python is interpreted, and loses the efficiency of compiled languages.
- Python users then write programs for small, specific jobs. These programs are usually for

the programmer’s eye only, and as such are often incomprehensible to everyone but the
original programmer. In that respect, I can only emphasize the need for clarity, as well as
for useful comments in your source files!

- Python was designed to be easy for humans. As a consequence, it is relatively lenient on
the style you use. This can lead to bad programming habits. As an analogy, think of
what would happen to your English writing style if nobody had ever cared about how you
write as long as they understand what you have written. To avoid this, the key is to
develop first a method to solve your problem that is independent of Python (or any other
language), and then to adapt this method to Python.

2. What is Python used for?

Python has been successfully implemented in many software applications as a scripting
language.

Python is a very useful programming language for web applications.

Python is used widely for game development, for 3D animation packages, in the information
security industry,…

3. How do I get Python?

Python has been ported to many platforms, and will certainly run on the standard operating
systems such as UNIX, Linux, Solaris, FreeBSD, all flavors of Windows, and Apple MacOS.

Python 2 versus Python 3

In December 2008, the Python consortium released a completely new version of Python, Python
3.0, that is not backward compatible: this means that programs written with Python 1 or Python 2
may not run under Python 3.0. At this stage, we will stay with Python 2, as it remains the most
common version found on many operation systems. Even if Python 2 and Python 3 are not fully
compatible, once you’ll know Python version 2, switching to version 3 will be easy.

Where to get Python:

- You can get the source to the latest stable release of Python from
 http://www.python.org. Remember that you want Python 2 at this stage.

- Binary distributions for some ports are available at the same address
- You can get binary packages of Python for Linux, Solaris, Mac OS and Windows from

ActiveState at http://www.activestate.com/ActivePython (free for download)

Installing Python on Linux/UNIX

Python is freely available, and usually comes packaged with most Linux/UNIX distribution.
Type python from a shell prompt to check this. If you see something that starts with the text
Python, then you already have python. If you don’t, check the install media (CD or DVD from
which you installed Linux): the Python package should be available on it. Otherwise, get the
binaries from the site mentioned above.

Installing Python on Mac Os

Again, Python comes packaged with the different flavors of Mac OS X, and you probably have
nothing to do! Check it using python from a terminal. If you do not have it, I would advise
getting it from ActiveState.

Installing Python on Windows

Installing ActivePython is quite straightforward. Download ActivePython’s Python installer for
Windows from the ActiveState web site (again, it is free for download). Choose the appropriate
version for the operating system you have (32 bit, or 64 bit). I would strongly advise using the
MSI installer, in which case you will need Windows Installer 2.0+ (which you probably already
use). It should work under Vista and Windows 7, but I have not tried it.

4. Getting an IDE for Python

IDEs (integrated Development Environment) are great tools for learning a computer language
and use it efficiently. There are many IDEs available for Python: see
http://wiki.python.org/moin/IntegratedDevelopmentEnvironments for a list of such IDEs.

I strongly recommend IDLE that is available for nearly all platforms. See
http://www.python.org/idle/doc/idlemain.html ; it should come by default when you install
Python on Windows; you have to install it however on Linux and MacOS platforms. For the
latter, please check: http://challenge.ncss.edu.au/gsg-osx/ .

5. Using Python

You have two main ways to use Python:

- Use it directly through a Control Window: again, I strongly advise using the IDLE
interface

- Write the Python program (module) using a text editor, and then execute this program
through the python interpreter. Again, this can be done using IDLE; alternatively, you
can use standard text editors for this task (see below)

Editing a Python program

Python source code is just plain text and should be written with a plain text editor, rather than a
word processor. If you are using Windows, you can use Notepad, despite its annoying tendency

to rename file extension to .txt. You may also use Word, as long as you save the file as text, with
line breaks.

I would really recommend getting a good programmer’s editor. For Windows and Mac, I can
recommend jEdit (http://www.jedit.org/): it is free (open source), runs under Windows, Mac OS
X, Unix and Linux. It is easy to use, highly customizable, with many useful plugins. Another
option for Mac user is TextWrangler (http://www.barebones.com/products/textwrangler/).

Naming a Python program

Traditionally, UNIX programs take no extension, while Windows files take a three-letter
extension to indicate their type (.exe for an executable, .doc for a document –usually Word file-,
.xls for a spreadsheet, …); the standard extension for Python program is py.

Obviously, the choice of the name in front of the extension is entirely yours!

Using Python in an IDE

If you are mainly using your computer in a graphical environment like Windows or X, you may
not be familiar with using the command line interface, or “shell”. The “shell” is the program that
gets input from you through the keyboard. The “shell prompt” or just “prompt” refers to the text
that prompts you to enter a command. The standard prompt in IDLE is:

>>>

i.e. 3 chevrons.

In this primer, I will use a prompt that looks like:

 >>>

I will show the text that you would type in bold and the text the computer generates in italic:

>>> print “Hello world!”
Hello World!

6. Your first Python program

Traditionally, the first program anyone writes in a new language is called “Hello World!”, where
you make the program prints that statement. Python allows us to do so using the print statement.
The simplest form of the print statement takes a single argument and writes it to the standard
output, i.e. the command window you have open. So your program consists of the single
statement:
print “Hello World!\n”

You can execute this command directly in the IDLE main window, or you can incorporate it into
a Python module, hello.py. The file hello.py contains:

The different elements of a Python script:

- Documenting the program: any line (except the first) starting with a sharp (#) is treated
as a command line and ignored. This allows you to provide comments on what your
program is doing: this is extremely useful, so use it! More generally, a line in a Python
script may contain some Python code, and be followed by a comment. This means that
we can document the program “inline”.

- Keywords: Instructions that Python recognizes and understands. The word print in the

program above is one example. There are two types of keywords:

§ functions (such as the print keyword); these are the verbs of the programming
language and they tell python what to do.

§ Control keywords, such as if and else.

The number of Python keywords is small:

and del from not while
as elif global or with
assert else if pass yield
break except import print class
exec in raise continue finally
is return def for lambda
try

It is a good idea to respect keywords, and not use them as names in your programs!

- Modules: Pythons come with a large list of modules that increases its functionality; these
modules add keywords to the small list provided above, but are only available when the
module has been specifically called. For example, adding:

use numpy

adds the modules of numerical functions “numpy” that are now accessible to the
programmer.

- Statements: Statements are the sentences of the program. Python is lenient however, and

does not need a full stop to end a statement. The indentation levels of consecutive lines

print “Hello World!\n”

are used to generate INDENT and DEDENT, which in turn are used to determine the
grouping of statements.

- White space: White space is the name given to tabs, spaces, and new lines. Python is

quite strict about where you put white space in your program. For example, we have seen
that we use indentation to help show the block structure of statements.

- Escape sequences: Python provides a mechanism called “escape sequences” to output
special characters/actions: the sequence \n in the program above tells Python to start a
new line. Here is a list of the more common escape sequences (also called
“metacharacters”):

Escape Sequence Meaning
\t Tab
\n Start a new line
\r Carriage return
\’ Single quote
\” Double quote
\\ Backslash
\b Back up one character

(‘backspace’)
\a Alarm (rings the system bell)

Simple exercises:

1) Write a program printline.py, that prints the sentence “This is my second program”:

a. As a single line
b. With a single word on each line.

2) Find an online manual for Python

3) Which of the following statements are likely to cause problems:

a. print “This is a valid statement\n”
b. print “This is a valid statement”\n
c. print “This is a ”valid” statement”
d. printx “This is a valid statement\n”

