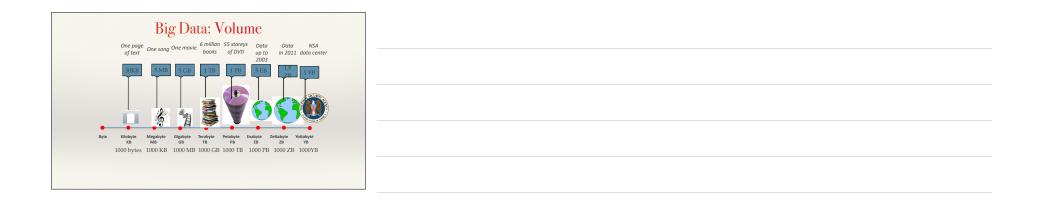


Digital Data
Binary and hexadecimal representations
Different types of numbers: natural numbers, integers, real numbers
ASCII code and UNICODE
Sound: Sampling, and Quantitizing
Images

Digital Data	
Binary and hexadecimal representations	
Different types of numbers: natural numbers, integers, real numbers	
ASCII code and UNICODE	
Sound: Sampling, and Quantitizing	
Images	

Number representation
We are used to counting in base 10:
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$
thousands hundreds tens units
Example: $1 7 3 2 \longleftarrow digits$
1x1000+7x100+3x10+2x1 = 1732

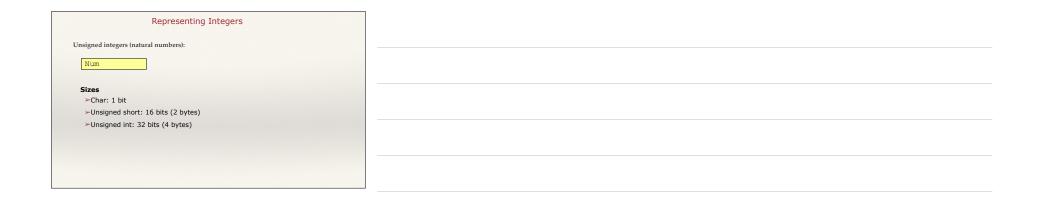


Number representation					
Base 10	Base 2				
0	0				
1	1				
2	10				
3	11				
4	100				
5	101				
6	110				
253	11111101				
254	11111110				
255	11111111				

Conversion
se 2 to base 10:
1 1 1 0 1 0 1 0 1 0 0
1024 512 256 128 64 32 16 8 4 2 1
$1 \times 1024 + 1 \times 512 + 1 \times 256 + 0 \times 128 + 1 \times 64 + 0 \times 32 + 1 \times 16 + 0 \times 8 + 1 \times 4 + 0 \times 2 + 0 \times 1 = 1876$
ise 10 to base 2:
1877 %2 = 938 Remainder 1
938 %2 = 469 Remainder 0 469 %2 = 234 Remainder 1
234 %2 = 117 Remainder 0
117%2 = 58 Remainder 1
58 %2 = 29 Remainder 0 29 %2 = 14 Remainder 1
14%2 = 7 Remainder 0
7 %2 = 3 Remainder 1 3 %2 = 1 Remainder 1
$3 \ \%^2 = 0$ Remainder 1 1 $\%^2 = 0$ Remainder 1
1877 (base10) = 11101010101 (base 2)

Facts about Binary Numbers
-Each "digit" of a binary number (each 0 or 1) is called a bit
-1 byte = 8 bits
-1 KB = 1 kilobyte = 2^{10} bytes = 1024 bytes (=1 thousand bytes)
-1 MB = 1 Megabyte = 2 ²⁰ bytes = 1,048,580 bytes (≈ 1 million bytes)
-1 GB = 1 Gigabyte = 2 ³⁰ bytes = 1,073,741,824 bytes (=1 billion bytes)
-1 TB = 1 Tetabyte = 2 ⁴⁰ bytes = 1,099,511,627,776 bytes (≈ 1 trillion bytes)
 A byte can represent numbers up to 255: 1111111 (base 2) = 255 (base 10) The largest number represented by a binary number of size N is 28 - 1
- 1 ne largest number represented by a binary number of size N is 2N - 1

	Hexadecimal numbers
Everything we hav again in other base	re learned in base 10 should be studied s !!
Example: multiplicat	ion table in base 16:
	1 2 3 4 5 6 7 8 6 6 6 6 7 6 6 7 6 6 7 6 6 7 6 6 7 6 6 7 7 6 7 7 6 7 7 6 7 7 6 7 7 6 7 7 6 7 7 6 7 7 7 8 7 7 8 7 8 7 8 7 8
	2 3 6 8 C F 10 <th10< th=""> <th10< th=""> <th10< th=""></th10<></th10<></th10<>
	0 6 12 13 15 15 16 16 16 16 16 16 16 7 7 6 10 16 24 40 45 45 56
	y 1/2
	0 10 17 47 60 90 64 97 84 89 94 90 94 c 1 16 94 16 94 164 96 96 164 96 96 164 96 164
	£ 6 12 2A 18 4A 54 42 70 76 86 9A AB 54 52 7 7 11 20 64 54 64 70 77 85 84 64 64 70 72 85 84 64 61 62 62 7 17 12 20 16 45 46 70 70 95 85 84 61 62 61


Base 10	Base 2	Base 16			
0	0000	0			
1	0001	1			
2	0010	2			
3	0011	3			
4	0100	4			
5	0101	5			
6	0110	6			
7	0111	7			
8	1000	8			
9	1001	9			
10	1010	А			
11	1011	В			
12	1100	С			
13	1101	D			
14	1110	Е			
15	1111	F	1		

(Conversion: From base 2 to base 16, and back
This is in fact easy!!	
-From base 2 to base 16:	
	Example: 11011000100 Step 1: break into groups of 4 (starting from the right):
	110 1100 0100
	Step 2: pad with 0, if needed: 0110 1100 0100
	Step 3: convert each group of 4, using table:
	6 C 4
	Step 4: regroup: 6C4
	bL4 11011000100 (base 2) = 6C4 (base 16)

	Conversion: From base 2 to base 16, and back
From base 16 to base	2:
	Example: 4FD
	Step 1: split:
	4 F D
	Step 2: convert each "digit", using table: 0100 1111 1101
	Step 3: Remove leading 0, if needed
	100 1111 1101
	Step 4: regroup:
	10011111101
	4FD (base 16) = 1001111101 (base 2)

Digital Data
Binary and hexadecimal representations
Different types of numbers: natural numbers, integers, real numbers
ASCII code and UNICODE
Sound: Sampling, and Quantitizing
Images

The different set of numbers N Natural numbers 1,2,3,4,
\mathbb{N} Natural numbers $1, 2, 3, 4 \dots$,
\mathbb{Z} Integers, -4, -3, -2, -1, 0, 1, 2, 3, 4,
\mathbb{Q} Rational numbers $\frac{a}{b}$ where a and b are integers and b is not zero
\mathbb{R} Real numbers The limit of a convergent sequence of rational numbers
\mathbb{C} Complex numbers $a + ib$ where a and b are real numbers and i is the square root of -1

Representing Integers	
Signed integers	
s Num	
S:	
 sign bit: 0 means positive, 1 means negative 	
Num:	
 If s = 0, direct representation of the number in binary form 	
 If s = 1, two's complement of the number 	
Sizes	
≻Char: 1 bit	
≻Short: 16 bits (2 bytes)	
➤int: 32 bits (4 bytes)	

Representing Integers: two's complement
The two's complement of an $\mathit{N}\mbox{-bit}$ number is defined as its complement with respect to 2^{N}
The sum of a number and its two's complement is 2 ^N .
For instance, for the three-bit number 010, the two's complement is 110, because
$010 + 110 = 1000 (= 2^3 = 8).$
The two's complement is calculated by inverting the bits and adding one.

Eight-bit signed intege	
Unsigned value Two's	o's complement value
0000 0	0
1001 1	1
010 2	2
110 126	126
1111 127	127
128	-128
129	-127
0010 130	-126
110 254	-2
111 255	-1

IEEE Floating Point Representation

IEEE Standard 754

Established in 1985 as uniform standard for floating point arithmetic Before that, many idiosyncratic formats

≻Supported by all major CPUs

Driven by Numerical Concerns

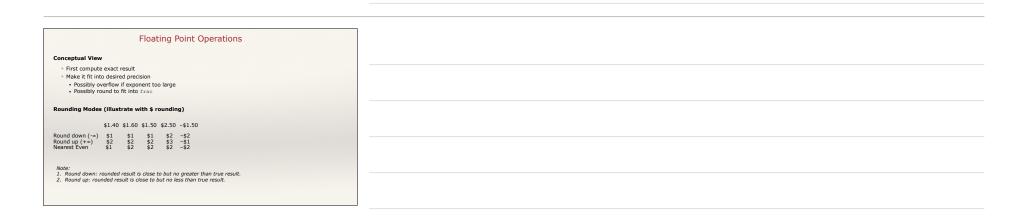
≻Nice standards for rounding, overflow, underflow

Hard to make go fast
 Numerical analysts predominated over hardware types in defining standard

IEEE Floating Point Representation

Numerical Form

(-1)^s M 2^E


- \succ Sign bit **s** determines whether number is negative or positive
- ≻Significand **M** normally a fractional value in range [1.0,2.0).
- ≻Exponent *E* weights value by power of two

Encoding

s exp frac ≻MSB is sign bit ≻exp field encodes E ≻frac field encodes M

	IEEE Floating Point Representation
s <mark>exp</mark>	frac
Encoding	
➤MSB is sign bit ➤exp field encode	es E
≻frac field encod	
Sizes	
 Single precision (32 bits total) 	: 8 exp bits, 23 frac bits
≻Double precisio (64 bits total)	n: 11 exp bits, 52 frac bits
 Extended precis Only found i Stored in 80 	ion: 15 exp bits, 63 frac bits n Intel-compatible machines bits (1 bit wasted)

Unwanted noise

Computers encounter noise!

The Ariane 5 tragedy: On June 1996, the first Ariane 5 was launched... and exploded after 37 seconds

The failure of the Ariane 501 was caused by the complete loss of guidance and altitude information 37 seconds after start....due to a numerical error.

https://www.wired.com/2005/11/historys-worst-software-bugs/

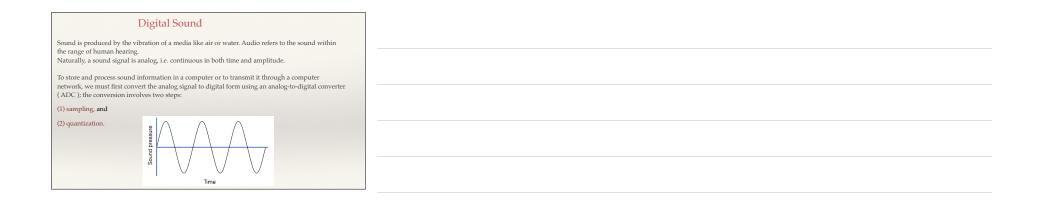
Digital Data
Binary and hexadecimal representations
Different types of numbers: natural numbers, integers, real numbers
ASCII code and UNICODE
Sound: Sampling, and Quantitizing
Images

ASCII American Standard Code for Information Interchange
So far, we have seen how computers can handle numbers.
What about letters / characters? The ASCII code was designed for that: it assigns a number to
each character: A-Z: 65- 90
a-z: 97-122 0-9: 48- 57

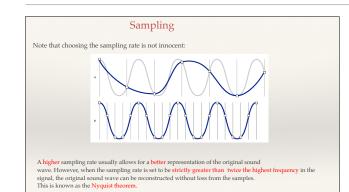
ASCII	
American Standard Code for Informati	on Interchange
Dec Rex Char Dec Rex Char Dec Rex C	
1 01 Sind Yivaday 39 21 4 65 41 A 2 02 Sind Yivada 24 22 6 6 41 A 3 00 Ford Yivad 35 22 6 6 7 83 6 4 04 Ford Hammat 36 24 6 68 4 5 5 05 Forat Hammat 36 24 6 68 4 5 6 06 Addametedga 39 26 4 70 66 7 7 07 Auditedga 39 27 71 47 0	90 62 b 90 63 c 100 64 d 101 65 e 102 86 f
0 00 Bestigneether 01 28 (72 49 72 0 00 Propositional data 12 0 73 49 72 10 0A Lar Media 01 22 2.4 7 4.4 32 10 0A Lar Media 03 28 4 76 44.5 12 0C Form Media 43 20 - 72 40 21 10 0A Lar Media 20 20 - 72 40 21	105 69 1 105 68 3 107 68 k 106 60 1
14 0.02 Swittout 46 22 7 7.94 42 15 0.7 Swittin 47 27 7 94 47 0 16 10 Debterie eccept 48 30 0 00 50 50 17 12 ence control 4 93 31 1 15 10 18 12 Democ control 2 50 32 2 25 52 8 59 53 55	111 67 0 112 70 p 113 71 q 114 72 r
20 14 Device core04 52 34 4 94 54 7 21 15 Hegs-admonwatelite 53 35 5 95 55 0 55 0 55 0 55 0 55 0 55 0 55 0 55 0 55 0 55 0 55 0 5 0 5 3 5 0 55 0 5 0 5 3 7 0 57 7 27 27 24 26 0.end 5 37 7 0 27 27 24 26 0.end 5 35 3 7 7 0 27 7 2 26 28 0.end 5 35 7 7 0 27 7 2 26 36 0 8 25 27 7 2 26 36 36 36 36	116 74 5 117 75 9 118 76 7 119 77 9 120 76 x
25 19 6rd 4 median 57 39 9 69 59 16 14 State Mathematics 66 34 1 60 54 34 60 54 34 60 54 34 54 54 54 54 54 54 54 54 54 54 55 54 34 5	122 7A 5 123 78 (124 7C) 125 70)
30 1E Record separator 62 3E 94 5E 1 31 1F Unit separator 63 3F 7 95 SF	126 72 ~ 127 78 D

UNICODE
ASCII only contains 127 characters (though an extended version exists
with 257 characters).
This is by far not enough as it is too restrictive to the English language.
UNICODE was developed to alleviate this problem: the latest version,
UNICODE 14.0 (September 2021) contains more than 140,000 characters, covering most existing languages.
For more information, see:
http://www.unicode.org/versions/Unicode14.0.0/

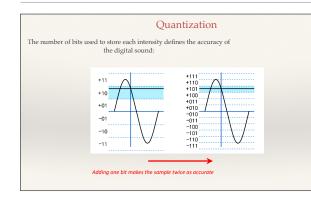
-			
	a	ital	Data
	g	lui	Dutu

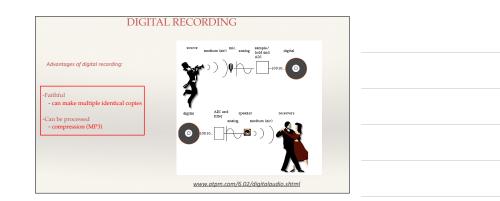

Binary and hexadecimal representations

Different types of numbers: natural numbers, integers, real numbers


ASCII code and UNICODE

Sound: Sampling, and Quantitizing


Images



Audio Sound	
How much space do we need to store one minute of music?	
- 60 seconds - 44,100 samples -16 bits (2 bytes) per sample	
- 2 channels (stereo)	
S = 60x44100x2x2 = 10,534,000 bytes ≈ 10 MB !!	
1 hour of music would be more than 600 MB !	



Digital Data
Binary and hexadecimal representations
Different types of numbers: natural numbers, integers, real numbers
ASCII code and UNICODE
Sound: Sampling, and Quantitizing
Images

D	igital	Images

Sampling: Images are broken down into little squares: pixels Resolution: Number of squares along each direction

Quantization:


Each pixel is characterized either as

• A binary number (0 or 1) to indicate black or white

A natural number between 0 and 255, to indicate a gray scale
A set of three numbers, each between 0 and 255, to indicate the amount of Red (R), Green (G), and Blue (B)

"True Color": a pixel is represented by 24 bits, corresponding to 16,777,216 possible colors

