
Digital Data

Patrice Koehl
Computer Science
UC Davis

Digital Data

Binary and hexadecimal representations

ASCII code and UNICODE

Sound: Sampling, and Quantitizing

Images

Different types of numbers: natural numbers, integers, real numbers

Digital Data

Binary and hexadecimal representations

ASCII code and UNICODE

Sound: Sampling, and Quantitizing

Images

Different types of numbers: natural numbers, integers, real numbers

Number representation

1 7 3 2

1000 100 10 1

1x1000+7x100+3x10+2x1 = 1732

1000 100 10 1

We are used to counting in base 10:

Example:

….. thousands hundreds tens units

103 102 101 100

digits

1 1 0 1 1 0 0 0 1 0 0
1024 512 256 128 64 32 16 8 4 2 1

1x1024+1x512+0x256+1x128+1x64+0x32+ 0x16+ 0x8 + 1x4 + 0x2 + 0x1 = 1732

Computers use a different system: base 2:

1024 512 256 128 64 32 16 8 4 2 1
210 29 28 27 26 25 24 23 22 21 20

Example:

bits

Number representation

Base 10 Base 2
0 0
1 1
2 10
3 11
4 100
5 101
6 110
… …

253 11111101
254 11111110
255 11111111
… …

Number representation

From base 2 to base 10:
1 1 1 0 1 0 1 0 1 0 0

1024 512 256 128 64 32 16 8 4 2 1

1x1024+1x512+1x256+0x128+1x64+0x32+ 1x16+ 0x8 + 1x4 + 0x2 + 0x1 = 1876

Conversion

From base 10 to base 2:
1877 %2 = 938 Remainder 1
 938 %2 = 469 Remainder 0
 469 %2 = 234 Remainder 1
 234 %2 = 117 Remainder 0
 117 %2 = 58 Remainder 1
 58 %2 = 29 Remainder 0
 29 %2 = 14 Remainder 1
 14 %2 = 7 Remainder 0
 7 %2 = 3 Remainder 1
 3 %2 = 1 Remainder 1
 1 %2 = 0 Remainder 1

1877 (base10) = 11101010101 (base 2)

-Each “digit” of a binary number (each 0 or 1) is called a bit

-1 byte = 8 bits

-1 KB = 1 kilobyte = 210 bytes = 1024 bytes (≈1 thousand bytes)

-1 MB = 1 Megabyte = 220 bytes = 1,048,580 bytes (≈ 1 million bytes)

-1 GB = 1 Gigabyte = 230 bytes = 1,073,741,824 bytes (≈1 billion bytes)

-1 TB = 1 Tetabyte = 240 bytes = 1,099,511,627,776 bytes (≈ 1 trillion bytes)

-A byte can represent numbers up to 255: 11111111 (base 2) = 255 (base 10)

-The largest number represented by a binary number of size N is 2N - 1

Facts about Binary Numbers

Big Data: Volume

Byte Kilobyte Megabyte Gigabyte Terabyte Petabyte Exabyte Zettabyte Yottabyte
 KB MB GB TB PB EB ZB YB

 1000 bytes 1000 KB 1000 MB 1000 GB 1000 TB 1000 PB 1000 ZB 1000YB

Big Data: Volume

Byte Kilobyte Megabyte Gigabyte Terabyte Petabyte Exabyte Zettabyte Yottabyte
 KB MB GB TB PB EB ZB YB

 1000 bytes 1000 KB 1000 MB 1000 GB 1000 TB 1000 PB 1000 ZB 1000YB

30KB

One page
of text

5 MB

One song

5 GB

One movie 6 million
books

1 TB

55 storeys
of DVD

1 PB

Data
up to
2003

5 EB

Data
in 2011

1.8
ZB

NSA
data center

1 YB

Big Data: Volume

Byte Kilobyte Megabyte Gigabyte Terabyte Petabyte Exabyte Zettabyte Yottabyte
 KB MB GB TB PB EB ZB YB

 1000 bytes 1000 KB 1000 MB 1000 GB 1000 TB 1000 PB 1000 ZB 1000YB

30KB

One page
of text

5 MB

One song

5 GB

One movie 6 million
books

1 TB

55 storeys
of DVD

1 PB

Data
up to
2003

5 EB

Data
in 2011

1.8
ZB

NSA
data center

1 YB

1s 20 mins 11 days 30 years 300 30 million 30 billion ….
 centuries years years

Hexadecimal numbers

While base 10 and base 2 are the most common bases used
to represent numbers, others are also possible:
base 16 is another popular one, corresponding to
hexadecimal numbers

256 16 1

162 161 160

The “digits” are: 0 1 2 3 4 5 6 7 8 9 A B C D E F

Example: 256 16 1

2 A F

2x256 + 10*16 + 15x1 = 687

Hexadecimal numbers

Everything we have learned in base 10 should be studied
again in other bases !!

Example: multiplication table in base 16:

Base 10 Base 2 Base 16
0 0000 0
1 0001 1
2 0010 2
3 0011 3
4 0100 4
5 0101 5
6 0110 6
7 0111 7
8 1000 8
9 1001 9
10 1010 A
11 1011 B
12 1100 C
13 1101 D
14 1110 E
15 1111 F

Hexadecimal numbers

Conversion: From base 2 to base 16, and back

This is in fact easy!!

-From base 2 to base 16:
Example: 11011000100

Step 1: break into groups of 4 (starting from the right):

 110 1100 0100

Step 2: pad with 0, if needed:

0110 1100 0100

Step 3: convert each group of 4, using table:

 6 C 4

Step 4: regroup:

6C4

11011000100 (base 2) = 6C4 (base 16)

From base 16 to base 2:

Example: 4FD

Step 1: split:

 4 F D

Step 2: convert each “digit”, using table:

0100 1111 1101

Step 3: Remove leading 0, if needed

 100 1111 1101

Step 4: regroup:

10011111101

4FD (base 16) = 10011111101 (base 2)

Conversion: From base 2 to base 16, and back

Digital Data

Binary and hexadecimal representations

ASCII code and UNICODE

Sound: Sampling, and Quantitizing

Images

Different types of numbers: natural numbers, integers, real numbers

The different set of numbers

Representing Integers

Num

Sizes
➢Char: 1 bit

➢Unsigned short: 16 bits (2 bytes)

➢Unsigned int: 32 bits (4 bytes)

Unsigned integers (natural numbers):

Representing Integers

Sizes
➢Char: 1 bit

➢Short: 16 bits (2 bytes)

➢int: 32 bits (4 bytes)

Signed integers

s Num

S:
• sign bit: 0 means positive, 1 means negative

Num:
• If s = 0, direct representation of the number in binary form
• If s = 1, two’s complement of the number

Representing Integers: two’s complement

The two's complement of an N-bit number is defined as its complement with respect to 2N

The sum of a number and its two's complement is 2N.

For instance, for the three-bit number 010, the two's complement is 110, because
010 + 110 = 1000 (= 23 = 8).

The two's complement is calculated by inverting the bits and adding one.

https://en.wikipedia.org/wiki/Method_of_complements

IEEE Standard 754

➢Established in 1985 as uniform standard for floating point arithmetic
Before that, many idiosyncratic formats

➢Supported by all major CPUs

Driven by Numerical Concerns

➢Nice standards for rounding, overflow, underflow
➢Hard to make go fast

• Numerical analysts predominated over hardware types in defining standard

IEEE Floating Point Representation

IEEE Floating Point Representation

Numerical Form

(–1)s M 2E

➢Sign bit s determines whether number is negative or positive

➢Significand M normally a fractional value in range [1.0,2.0).

➢Exponent E weights value by power of two

Encoding

➢MSB is sign bit

➢exp field encodes E

➢frac field encodes M

s exp frac

Encoding
➢MSB is sign bit
➢exp field encodes E
➢frac field encodes M

Sizes
➢Single precision: 8 exp bits, 23 frac bits
(32 bits total)

➢Double precision: 11 exp bits, 52 frac bits
(64 bits total)

➢Extended precision: 15 exp bits, 63 frac bits
• Only found in Intel-compatible machines
• Stored in 80 bits (1 bit wasted)

s exp frac

IEEE Floating Point Representation

IEEE Floating Point Representation

Special value:

 exp = 111…1

➢ exp = 111…1, frac = 000…0
• Represents value ∞ (infinity)
• Operation that overflows
• Both positive and negative
• E.g., 1.0/0.0 = −1.0/−0.0 = +∞, 1.0/−0.0 = −∞

➢exp = 111…1, frac ≠ 000…0
• Not-a-Number (NaN)
• Represents case when no numeric value can be

determined
• E.g., sqrt(–1), ∞ − ∞

Conceptual View

❖ First compute exact result
❖ Make it fit into desired precision

• Possibly overflow if exponent too large
• Possibly round to fit into frac

Rounding Modes (illustrate with $ rounding)

	 	 $1.40 $1.60	 $1.50	 $2.50 –$1.50

Round down (-∞)	 $1	 $1	 $1	 $2	 –$2
Round up (+∞) 	 $2	 $2	 $2	 $3	 –$1
Nearest Even 	 $1	 $2	 $2	 $2	 –$2

Note:
1. Round down: rounded result is close to but no greater than true result.
2. Round up: rounded result is close to but no less than true result.

Floating Point Operations

Computers encounter noise!

The Ariane 5 tragedy: On June 1996,
the first Ariane 5 was launched…
and exploded after 37 seconds

The failure of the Ariane 501 was
caused by the complete loss of
guidance and altitude information
37 seconds after start….due to a
numerical error.

Unwanted noise

https://www.wired.com/2005/11/historys-worst-software-bugs/

Digital Data

Binary and hexadecimal representations

ASCII code and UNICODE

Sound: Sampling, and Quantitizing

Images

Different types of numbers: natural numbers, integers, real numbers

ASCII
American Standard Code for Information Interchange

So far, we have seen how computers can handle numbers.

What about letters / characters?

The ASCII code was designed for that: it assigns a number to
each character:

A-Z: 65- 90
a-z: 97-122
0-9: 48- 57

https://www.wired.com/2005/11/historys-worst-software-bugs/

ASCII
American Standard Code for Information Interchange

UNICODE

ASCII only contains 127 characters (though an extended version exists
with 257 characters).

This is by far not enough as it is too restrictive to the English language.

UNICODE was developed to alleviate this problem: the latest version,
UNICODE 14.0 (September 2021) contains more than 140,000
characters, covering most existing languages.

For more information, see:

http://www.unicode.org/versions/Unicode14.0.0/

Digital Data

Binary and hexadecimal representations

ASCII code and UNICODE

Sound: Sampling, and Quantitizing

Images

Different types of numbers: natural numbers, integers, real numbers

http://www.unicode.org/versions/Unicode14.0.0/

Sound is produced by the vibration of a media like air or water. Audio refers to the sound within
the range of human hearing.
Naturally, a sound signal is analog, i.e. continuous in both time and amplitude.

To store and process sound information in a computer or to transmit it through a computer
network, we must first convert the analog signal to digital form using an analog-to-digital converter
(ADC); the conversion involves two steps:

(1) sampling, and

(2) quantization.

Digital Sound

Sampling
Sampling is the process of examining the value of a continuous function
at regular intervals.

Sampling usually occurs at uniform intervals, which are referred to as sampling
intervals. The reciprocal of sampling interval is referred to as the sampling
frequency or sampling rate.
If the sampling is done in time domain, the unit of sampling interval is second and
the unit of sampling rate is Hz, which means cycles per second.

Note that choosing the sampling rate is not innocent:

Sampling

A higher sampling rate usually allows for a better representation of the original sound
wave. However, when the sampling rate is set to be strictly greater than twice the highest frequency in the
signal, the original sound wave can be reconstructed without loss from the samples.
This is known as the Nyquist theorem.

Quantization
Quantization is the process of limiting the value of a sample of a continuous
function to one of a predetermined number of allowed values,
which can then be represented by a finite number of bits.

Quantization
The number of bits used to store each intensity defines the accuracy of

the digital sound:

Adding one bit makes the sample twice as accurate

Audio Sound

Sampling:

The human ear can hear sound up to 20,000 Hz: a sampling rate of
 40,000 Hz is therefore sufficient. The standard for digital audio is
44,100 Hz.

Quantization:

The current standard for the digital representation of audio sound is to use
16 bits (i.e 65536 levels, half positive and half negative)

How much space do we need to store one minute of music?

- 60 seconds
- 44,100 samples
-16 bits (2 bytes) per sample
- 2 channels (stereo)

S = 60x44100x2x2 = 10,534,000 bytes ≈ 10 MB !!

1 hour of music would be more than 600 MB !

Audio Sound

www.atpm.com/6.02/digitalaudio.shtml

Analog Recording

www.atpm.com/6.02/digitalaudio.shtml

DIGITAL RECORDING

http://www.atpm.com/6.02/digitalaudio.shtml
http://www.atpm.com/6.02/digitalaudio.shtml

www.atpm.com/6.02/digitalaudio.shtml

DIGITAL RECORDING

-Faithful
- can make multiple identical copies

-Can be processed
- compression (MP3)

Advantages of digital recording:

Digital Data

Binary and hexadecimal representations

ASCII code and UNICODE

Sound: Sampling, and Quantitizing

Images

Different types of numbers: natural numbers, integers, real numbers

Digital Images

http://www.atpm.com/6.02/digitalaudio.shtml

Digital Images

Digital Images

Sampling:
Images are broken down into little squares: pixels
Resolution: Number of squares along each direction

Quantization:
Each pixel is characterized either as

• A binary number (0 or 1) to indicate black or white
• A natural number between 0 and 255, to indicate a gray scale
• - A set of three numbers, each between 0 and 255, to indicate the amount of Red (R), Green

(G), and Blue (B)

“True Color”: a pixel is represented by 24 bits, corresponding to 16,777,216 possible colors

Digital Images
The RGB color model (used for most digital representations of images)

Mixing colors:

Digital Images

The CMYK color model (used by color printers)

