# Computers Logic and CPU

Patrice Koehl Computer Science UC Davis



# Computers

Logic: acting on information

The Central Processing Unit (CPU)

Elements of a Computer

# Computers

Logic: acting on information

The Central Processing Unit (CPU)

Elements of a Compute:

| _ |  |
|---|--|
|   |  |
|   |  |
|   |  |
|   |  |
|   |  |
|   |  |
|   |  |
|   |  |
|   |  |
|   |  |
|   |  |
|   |  |
|   |  |
|   |  |
|   |  |
|   |  |
|   |  |
|   |  |
|   |  |
|   |  |
|   |  |
|   |  |
| _ |  |
|   |  |
|   |  |
|   |  |
|   |  |
|   |  |
|   |  |
|   |  |
|   |  |
|   |  |
|   |  |
|   |  |
|   |  |
|   |  |
|   |  |
|   |  |
|   |  |
|   |  |
|   |  |
|   |  |
|   |  |
|   |  |



















| Туре | Distinctive shape | Rectangular shape | Scolean eigebra between A & D | Truth table                                         |
|------|-------------------|-------------------|-------------------------------|-----------------------------------------------------|
| AMD  | =D-               | <b>=</b>          | $A \cdot B$                   | MPUT OUTPUT A 0 AND 5 0 0 0 0 1 0 1 0 0 1 1 1       |
| оя   | <b>⇒</b> D-       | 크리-               | A+8                           | RPUT OUTPUT A S ACRS G G G G G 1 1 5 G S 1 1 1      |
| NOT  |                   | -11-              | Ā                             | NPUT OUTPUT  A NOTA  0 1 1 0                        |
| NAND | =>-               | _ <u> </u>        | Ā-B                           | BPUT OUTPUT  A D ANAMOD B  D D 1  D 1  1 0 1  1 1 0 |
| NOR  | ⇒>-               | 21                | $\overline{A} + \overline{B}$ | BPUT CUTFUT  A B ANDR B  0 0 1  0 1 0  1 0 0  1 5 0 |

# Computers

Logic: acting on information

The Central Processing Unit (CPU)

Elements of a Computer



### The Fetch/Execute Cycle

The CPU cycles through a series of operations or instructions, organized in a cycle, the Fetch/Execute cycle:

- 1. Instruction Fetch (IF)
- 2. Instruction Decode (DP)
- 3. Data Fetch (DF)
- 4. Instruction Execute (IE)
- 5. Result Return











### Possible operations

Computers can only perform about 100 different types of operations; all other operations must be broken down into simpler operations among these 100.

Some of these operations:

-Add, Mult, Div -AND, OR, NAND, NOR, ... -Bit shifts -Test if a bit is 0 or 1 -Move information in memory

-...

### Repeating the F/E cycle

Computers get their impressive capabilities by performing many of these F/E cycles per second.

The computer clock determines the rate of F/E cycles per second; it is now expressed in GHz, i.e. in billions of cycles per seconds!

Note that the rate given is not an exact measurement.









# Computers Logic: acting on information The Central Processing Unit (CPU) Elements of a Computer







