
Mathematical Induction
Recursions

1 Mathematical Induction

Many theorems state that a proposition P (n) is true for all possible values on n, where n can be a
natural number or a positive integer. For example, we could be asked to show that

∀n ∈ N,
n∑

i=0

i =
n(n + 1)

2

We cannot prove such theorems by trying all possible values of n! Mathematical induction is a
proof technique that often allows us to prove such assertions.

How does it work?

Induction is equivalent to a “cascade” reaction. It works by first proving that the statement is true
for a start value, and then by proving that the process used to go from one value to the next is
valid. If both are true, then the statement is true for all values. Think of it as a “domino effect”.
If you have a long row of dominoes and if

a) The first domino falls

b) Whenever a domino falls, its next neighbor falls,

then all dominoes fall.

A proof by induction that a proposition P (n) is true for every natural number n consists of two
steps:

• Base case: The proposition P (i) is true for a start position i (usually i = 0 or i = 1)

• Inductive step: The implication P (k)→ P (k + 1) is shown to be true for very natural
number k ≥ i

The principle of proof by induction allows then to conclude that:

∀n ∈ N, n ≥ i, P (n) is true

A proof by mathematical induction can in fact be phrased as a rule of inference. Let n and i be
natural numbers. Then the proposition

[P (i) ∧ (∀k ∈ N, k ≥ i, P (k)→ P (k + 1))]→ (∀n ∈ N, n ≥ i, P (n))

is a tautology.
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Proof: Let us define,

Q : P (i) ∧ (∀k ∈ N, k ≥ i, P (k)→ P (k + 1))

R : ∀n ∈ N, n ≥ i, P (n)

We want to prove Q → R is always true. We use a proof by contradiction, i.e. we assume that Q
is true AND R is false.

R is false means that there exists at least one value of n ≥ i such that P (n) is not true. Let S be
the set of such values n for which P (n) is not true. S is not empty, and S is bounded from below,
by i. Therefore, S has a least element, NS (based on the well ordering property), with NS > i. As
NS is the least element of S, NS − 1 does not belong to S. Therefore P (NS − 1) is true. Since
NS−1 ≥ i and P (NS−1) is true, based on the fact that Q is true, P (NS) is true. We have reached
a contradiction: P (NS) is true, and since NS ∈ S, P (NS) is false. Therefore our assumption that
Q→ R can be false is false. The method of proof by induction is a valid method of proof.

Examples:

• Show that: ∀n ∈ N,
n∑

i=1

i =
n(n + 1)

2
.

Proof:

Let P (n) be the proposition:
n∑

i=1

=
n(n + 1)

2
. Let us also define LHS(n) =

n∑
i=1

i and

RHS(n) =
n(n + 1)

2

– Base case: We show that P (1) is true:

LHS(1) =
1∑

i=1

i = 1

RHS(1) =
1(1 + 1)

2
=

2

2
= 1

– Inductive step: Let k be a natural number, and let us suppose that P (k) is true. We
want to show that P (k + 1) is true.

Let us compute LHS(k + 1) =
k+1∑
i=1

i:
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LHS(k + 1) =
k∑

i=1

i + (k + 1)

=
k(k + 1)

2
+ (k + 1)

=
k(k + 1)

2
+

2(k + 1)

2

=
(k + 1)(k + 2)

2

And:

RHS(k + 1) =
(k + 1)(k + 2)

2

Therefore LHS(k + 1) = RHS(k + 1), which validates that P (k + 1) is true.

The principle of proof by mathematical induction allows us to conclude that P (n) is true for
all n.

• Show that: ∀n ∈ N,
n∑

i=1

i3 =

(
n(n + 1)

2

)2

.

Proof:

Let P (n) be the proposition:
n∑

i=1

i3 =

(
n(n + 1)

2

)2

. Let us also define LHS(n) =
n∑

i=1

i3 and

RHS(n) =

(
n(n + 1)

2

)2

– Base case: We show that P (1) is true:

LHS(1) =
1∑

i=1

i3 = 1

RHS(1) =

(
1(1 + 1)

2

)2

=

(
2

2

)2

= 1

– Inductive step: Let k be a natural number, and let us suppose that P (k) is true. We
want to show that P (k + 1) is true.

Let us compute LHS(k + 1) =
k+1∑
i=1

i3:
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LHS(k + 1) =
k∑

i=1

i3 + (k + 1)3

=

(
k(k + 1)

2

)2

+ (k + 1)3

=
k2

4
(k + 1)2 + (k + 1)(k + 1)2

=
k2 + 4k + 4

4
(k + 1)2

=
(k + 2)2

4
(k + 1)2

=

(
(k + 1)(k + 2)

2

)2

And:

RHS(k + 1) =

(
(k + 1)(k + 2)

2

)2

Therefore LHS(k + 1) = RHS(k + 1), which validates that P (k + 1) is true.

The principle of proof by mathematical induction allows us to conclude that P (n) is true for
all n.

2 Strong Mathematical Induction

There is another form of mathematical induction that is used to prove results: the method of strong
mathematical induction, also called the second principle of mathematical induction.

A proof by strong induction that a proposition P (n) is true for every natural number n consists
of two steps:

• Basis step: The proposition P (i) is true for a start position i (usually i = 0 or i = 1)

• Inductive step: The implication [P (i) ∧ P (i + 1) ∧ . . . ∧ P (k)]→ P (k + 1) is shown to
be true for very natural number k ≥ i

The principle of proof by strong induction allows then to conclude that:

∀n ∈ N, n ≥ i, P (n) is true
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Why would we need this? Let us go back to the domino analogy. In the standard induction, we
assumed that when domino k falls, domino k + 1 falls. But there could be situation in which this
is not enough: the weight of domino k alone is not enough to knock down domino k + 1. But if we
assume that all dominos up to k have fallen, then the cumulative weight of the domino up to k will
lead to domino k + 1 to fall. This is really an image, though. Strong induction is very much like
standard induction, except that we use more information to prove the inductive step.

Examples:

A) A chocolate bar consists of n unit squares arranged in a rectangular grid. You may split the
bar into individual unit squares, by breaking along the lines. What is the number of breaks
required?.

Proof:

We will show that the number of breaks needed is n− 1. Let P (n) be this proposition.

a) Base case: P (1) is true: we need 0 cuts to split a bar with a single square!

b) Inductive step:

Let k be a natural number, and let us suppose that P (1), P (2), . . ., and P (k) are all
true. Let us consider now a chocolate bar with k + 1 squares. We break it into two bars,
one with m1 squares, and one with m2 squares. Note that

m1 ≤ k,

m2 ≤ k,

m1 + m2 = k + 1.

As m1 ≤ k, P (m1) is true: to cut this bar we need m1 − 1 cuts.

As m2 ≤ k, P (m2) is true: to cut this bar we need m2 − 1 cuts.

Therefore, to cut the bar with k + 1 squares, we need m1 − 1 + m2 − 1 + 1 cuts (the +1
comes from the first cut!), namely m1 + m2 − 1 cuts, i.e. (k + 1)− 1 cuts, which proves
P (k + 1).

The principle of proof by strong induction allows us to conclude that P (n) is true for all n
natural number.

B) Consider a country with n cities, such that there is a one way road between any two cities.
Show that there is (at least) one path that goes through all cities.

Proof:

Let P (n) be this proposition.

a) Base case: P (1) is trivially true!

b) Inductive step:

Let k be a natural number, and let us suppose that P (1), P (2), . . ., and P (k) are all
true. Let us consider now that there are (k + 1) cities. We divide those cities into three
groups:
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a) The city Ck+1, i.e. the additional city in the case we have (k + 1) city

b) The set of cities A, such that each city in A has a one way road that leads to Ck+1

c) The set of cities B, such that Ck+1 has a road that leads to each city in B

This is possible as we know that Ck+1 has a road connecting it to any other cities, either
from, or to.

The set A is of size kA. As kA ≤ k, P (kA) is true and there is a path PA going through
all the cities in A. Let CA be the city where this path ends.

The set B is of size kB. As kB ≤ k, P (kB) is true and there is a path PB going through
all the cities in B. Let CB be the city where this path starts.

We can now build a path through all (k + 1) cities: start with PA, then connects CA

at the end of this path with Ck+1 (which is possible based on the definition of A), then
connects Ck+1 with CB (which is possible based on the definition of B) and finally follow
the path PB from its start point CB. Therefore P (k + 1) is true.

The principle of proof by strong induction allows us to conclude that P (n) is true for all n
natural number.

3 Recursive definitions

A recursive definition, or inductive definition, is used to define the elements in a set in terms of
other elements in the same set. This applies to sets that are implicitly defined by a function.

We usually use two steps to define a function recursively:

• Base case: Specify the value of the function at one, or a few start positions

• Inductive step: Give a rule for finding the value of the function at any integer value n,
given its value at smaller integer values.

Examples:

A) The factorial function !n is often defined recursively, using the following rules:.

Base case: 0! = 1

Inductive step: (n + 1)! = (n + 1)× n!

B) The Fibonacci numbers are defined with the following rules:.

Base case: f0 = 0 and f1 = 1

Inductive step: fn = fn−1 + fn−2
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Examples of proofs related to Fibonacci numbers

A) Let n be a natural number. Show that the proposition

P (n) : f1 + f3 + . . . + f2n−1 = f2n

is true for all n.

Let us define:

LHS(n) = f1 + f3 + . . . + f2n−1

RHS(n) = f2n

we want to show that

∀n ∈ N, LHS(n) = RHS(n)

We use an induction proof.

i) Base case: LHS(1) = f1 = 1 and RHS(1) = f2 = f1 + f0 = 1. Therefore LHS(1) =
RHS(1).

ii) Inductive step: Let k ≥ 1 and let us assume that LHS(k) = RHS(k). Then,

LHS(k + 1) = f1 + f3 + . . . + f2k−1 + f2k+1

= LHS(k) + f2k+1

= RHS(k) + f2k+1

= f2k + f2k+1

= f2k+2

and RHS(k + 1) = f2k+2. Therefore LHS(k + 1) = RHS(k + 1).

The principle of proof by induction allows us to conclude that LHS(n) = RHS)n) is true for
all n natural number.

B) Let n be a natural number. Show that the proposition

P (n) : fn−1fn+1 − f 2
n = (−1)n

is true for all n.

Let us define:

LHS(n) = fn−1fn+1 − f 2
n

RHS(n) = (−1)n

we want to show that

∀n ∈ N, LHS(n) = RHS(n)

We use an induction proof.
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i) Base case: LHS(1) = f0f2−f 2
1 = 0×1−12 = −1 and RHS(1) = (−1)1 = −1. Therefore

LHS(1) = RHS(1).

ii) Inductive step: Let k ≥ 1 and let us assume that LHS(k) = RHS(k). Then,

LHS(k + 1) = fkfk+2 − f 2
k+1

We know that fk+2 = fk+1 + fk:

LHS(k + 1) = fk(fk+1 + fk)− f 2
k+1

= fkfk+1 + f 2
k − f 2

k+1

We know that LHS(k) = RHS(k):

fk−1fk+1 − f 2
k = (−1)k

Therefore,

f 2
k = fk−1fk+1 − (−1)k

Replacing above,

LHS(k + 1) = fkfk+1 + fk−1fk+1 − (−1)k − f 2
k+1

= fk+1(fk + fk−1 − fk+1)− (−1)k

The first term on the right is equal to 0, based on the inductive definition of Fibonacci
numbers. Therefore LHS(k + 1) = −(−1)k = (−1)k+1. Since RHS(k + 1) = (−1)k+1,
we have shown that LHS(k + 1) = RHS(k + 1).

The principle of proof by induction allows us to conclude that LHS(n) = RHS)n) is true for
all n natural number.
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