Template for Proofs by Mathematical Induction

1. Express the statement that is to be proved in the form "for all $n \geq b, P(n)$ " for a fixed integer b.
2. Write out the words "Basis Step." Then show that $P(b)$ is true, taking care that the correct value of b is used. This completes the first part of the proof.
3. Write out the words "Inductive Step."
4. State, and clearly identify, the inductive hypothesis, in the form "assume that $P(k)$ is true for an arbitrary fixed integer $k \geq b$."
5. State what needs to be proved under the assumption that the inductive hypothesis is true. That is, write out what $P(k+1)$ says.
6. Prove the statement $P(k+1)$ making use the assumption $P(k)$. Be sure that your proof is valid for all integers k with $k \geq b$, taking care that the proof works for small values of k, including $k=b$.
7. Clearly identify the conclusion of the inductive step, such as by saying "this completes the inductive step."
8. After completing the basis step and the inductive step, state the conclusion, namely that by mathematical induction, $P(n)$ is true for all integers n with $n \geq b$.

It is worthwhile to revisit each of the mathematical induction proofs in Examples $1-14$ to see how these steps are completed. It will be helpful to follow these guidelines in the solutions of the exercises that ask for proofs by mathematical induction. The guidelines that we presented can be adapted for each of the variants of mathematical induction that we introduce in the exercises and later in this chapter.

Exercises

1. There are infinitely many stations on a train route. Suppose that the train stops at the first station and suppose that if the train stops at a station, then it stops at the next station. Show that the train stops at all stations.
2. Suppose that you know that a golfer plays the first hole of a golf course with an infinite number of holes and that if this golfer plays one hole, then the golfer goes on to play the next hole. Prove that this golfer plays every hole on the course.
Use mathematical induction in Exercises 3-17 to prove summation formulae. Be sure to identify where you use the inductive hypothesis.
3. Let $P(n)$ be the statement that $1^{2}+2^{2}+\cdots+n^{2}=$ $n(n+1)(2 n+1) / 6$ for the positive integer n.
a) What is the statement $P(1)$?
b) Show that $P(1)$ is true, completing the basis step of the proof.
c) What is the inductive hypothesis?
d) What do you need to prove in the inductive step?
e) Complete the inductive step, identifying where you use the inductive hypothesis.
f) Explain why these steps show that this formula is true whenever n is a positive integer.
4. Let $P(n)$ be the statement that $1^{3}+2^{3}+\cdots+n^{3}=$ $(n(n+1) / 2)^{2}$ for the positive integer n.
a) What is the statement $P(1)$?
b) Show that $P(1)$ is true, completing the basis step of the proof.
c) What is the inductive hypothesis?
d) What do you need to prove in the inductive step?
e) Complete the inductive step, identifying where you use the inductive hypothesis.
f) Explain why these steps show that this formula is true whenever n is a positive integer.
5. Prove that $1^{2}+3^{2}+5^{2}+\cdots+(2 n+1)^{2}=(n+1)$ $(2 n+1)(2 n+3) / 3$ whenever n is a nonnegative integer.
6. Prove that $1 \cdot 1!+2 \cdot 2!+\cdots+n \cdot n!=(n+1)!-1$ whenever n is a positive integer.
7. Prove that $3+3 \cdot 5+3 \cdot 5^{2}+\cdots+3 \cdot 5^{n}=3\left(5^{n+1}-1\right) / 4$ whenever n is a nonnegative integer.
8. Prove that $2-2 \cdot 7+2 \cdot 7^{2}-\cdots+2(-7)^{n}=(1-$ $\left.(-7)^{n+1}\right) / 4$ whenever n is a nonnegative integer.
9. a) Find a formula for the sum of the first n even positive integers.
b) Prove the formula that you conjectured in part (a).
10. a) Find a formula for

$$
\frac{1}{1 \cdot 2}+\frac{1}{2 \cdot 3}+\cdots+\frac{1}{n(n+1)}
$$

by examining the values of this expression for small values of n.
b) Prove the formula you conjectured in part (a).
11. a) Find a formula for

$$
\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+\cdots+\frac{1}{2^{n}}
$$

by examining the values of this expression for small values of n.
b) Prove the formula you conjectured in part (a).
12. Prove that

$$
\sum_{j=0}^{n}\left(-\frac{1}{2}\right)^{j}=\frac{2^{n+1}+(-1)^{n}}{3 \cdot 2^{n}}
$$

whenever n is a nonnegative integer.
13. Prove that $1^{2}-2^{2}+3^{2}-\cdots+(-1)^{n-1} n^{2}=(-1)^{n-1}$ $n(n+1) / 2$ whenever n is a positive integer.
14. Prove that for every positive integer $n, \sum_{k=1}^{n} k 2^{k}=$ $(n-1) 2^{n+1}+2$.
15. Prove that for every positive integer n,

$$
1 \cdot 2+2 \cdot 3+\cdots+n(n+1)=n(n+1)(n+2) / 3
$$

16. Prove that for every positive integer n,

$$
\begin{aligned}
1 \cdot 2 \cdot 3+2 \cdot 3 \cdot 4+\cdots & +n(n+1)(n+2) \\
& =n(n+1)(n+2)(n+3) / 4
\end{aligned}
$$

17. Prove that $\sum_{j=1}^{n} j^{4}=n(n+1)(2 n+1)\left(3 n^{2}+3 n-1\right) / 30$ whenever n is a positive integer.
Use mathematical induction to prove the inequalities in Exercises 18-30.
18. Let $P(n)$ be the statement that $n!<n^{n}$, where n is an integer greater than 1.
a) What is the statement $P(2)$?
b) Show that $P(2)$ is true, completing the basis step of the proof.
c) What is the inductive hypothesis?
d) What do you need to prove in the inductive step?
e) Complete the inductive step.
f) Explain why these steps show that this inequality is true whenever n is an integer greater than 1 .
19. Let $P(n)$ be the statement that

$$
1+\frac{1}{4}+\frac{1}{9}+\cdots+\frac{1}{n^{2}}<2-\frac{1}{n}
$$

where n is an integer greater than 1 .
a) What is the statement $P(2)$?
b) Show that $P(2)$ is true, completing the basis step of the proof.
c) What is the inductive hypothesis?
d) What do you need to prove in the inductive step?
e) Complete the inductive step.
f) Explain why these steps show that this inequality is true whenever n is an integer greater than 1 .
20. Prove that $3^{n}<n!$ if n is an integer greater than 6 .
21. Prove that $2^{n}>n^{2}$ if n is an integer greater than 4 .
22. For which nonnegative integers n is $n^{2} \leq n$!? Prove your answer.
23. For which nonnegative integers n is $2 n+3 \leq 2^{n}$? Prove your answer.
24. Prove that $1 /(2 n) \leq[1 \cdot 3 \cdot 5 \cdots \cdot(2 n-1)] /(2 \cdot 4$. $\cdots \cdot 2 n$) whenever n is a positive integer.
*25. Prove that if $h>-1$, then $1+n h \leq(1+h)^{n}$ for all nonnegative integers n. This is called Bernoulli's inequality.
*26. Suppose that a and b are real numbers with $0<b<a$. Prove that if n is a positive integer, then $a^{n}-b^{n} \leq$ $n a^{n-1}(a-b)$.
*27. Prove that for every positive integer n,

$$
1+\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{3}}+\cdots+\frac{1}{\sqrt{n}}>2(\sqrt{n+1}-1)
$$

28. Prove that $n^{2}-7 n+12$ is nonnegative whenever n is an integer with $n \geq 3$.
In Exercises 29 and 30, H_{n} denotes the nth harmonic number.
*29. Prove that $H_{2^{n}} \leq 1+n$ whenever n is a nonnegative integer.
*30. Prove that

$$
H_{1}+H_{2}+\cdots+H_{n}=(n+1) H_{n}-n .
$$

Use mathematical induction in Exercises 31-37 to prove divisibility facts.
31. Prove that 2 divides $n^{2}+n$ whenever n is a positive integer.
32. Prove that 3 divides $n^{3}+2 n$ whenever n is a positive integer.
33. Prove that 5 divides $n^{5}-n$ whenever n is a nonnegative integer.
34. Prove that 6 divides $n^{3}-n$ whenever n is a nonnegative integer.
*35. Prove that $n^{2}-1$ is divisible by 8 whenever n is an odd positive integer.
*36. Prove that 21 divides $4^{n+1}+5^{2 n-1}$ whenever n is a positive integer.
*37. Prove that if n is a positive integer, then 133 divides $11^{n+1}+12^{2 n-1}$.
Use mathematical induction in Exercises 38-46 to prove results about sets.
38. Prove that if $A_{1}, A_{2}, \ldots, A_{n}$ and $B_{1}, B_{2}, \ldots, B_{n}$ are sets such that $A_{j} \subseteq B_{j}$ for $j=1,2, \ldots, n$, then

$$
\bigcup_{j=1}^{n} A_{j} \subseteq \bigcup_{j=1}^{n} B_{j}
$$

