3 are relatively prime to 10 . Therefore the sum can no longer be 0 modulo 10. 45. Working modulo 10 , solve for d_{9}. The check digit for 11100002 is 5 . 47. PLEASE SEND MONEY 49. a) QAL HUVEM AT WVESGB b) QXB EVZZL ZEVZZRFS

CHAPTER 5

Section 5.1

1. Let $P(n)$ be the statement that the train stops at station n. Basis step: We are told that $P(1)$ is true. Inductive step: We are told that $P(n)$ implies $P(n+1)$ for each $n \geq 1$. Therefore by the principle of mathematical induction, $P(n)$ is true for all positive integers n. 3. a) $1^{2}=$ $1 \cdot 2 \cdot 3 / 6 \mathrm{~b})$ Both sides of $P(1)$ shown in part (a) equal 1 . c) $1^{2}+2^{2}+\cdots+k^{2}=k(k+1)(2 k+1) / 6$ d) For each $k \geq 1$ that $P(k)$ implies $P(k+1)$; in other words, that assuming the inductive hypothesis [see part (c)] we can show $1^{2}+2^{2}+\cdots+k^{2}+(k+1)^{2}=(k+1)(k+2)(2 k+3) / 6$ e) $\left(1^{2}+2^{2}+\cdots+k^{2}\right)+(k+1)^{2}=[k(k+1)(2 k+$ 1) $/ 6]+(k+1)^{2}=[(k+1) / 6][k(2 k+1)+6(k+$ 1) $]=[(k+1) / 6]\left(2 k^{2}+7 k+6\right)=[(k+1) / 6](k+$ 2) $(2 k+3)=(k+1)(k+2)(2 k+3) / 6$ f) We have completed both the basis step and the inductive step, so by the principle of mathematical induction, the statement is true for every positive integer n. 5. Let $P(n)$ be " $1^{2}+3^{2}+\cdots+(2 n+1)^{2}=$ $(n+1)(2 n+1)(2 n+3) / 3$." Basis step: $P(0)$ is true because $1^{2}=1=(0+1)(2 \cdot 0+1)(2 \cdot 0+3) / 3$. Inductive step: Assume that $P(k)$ is true. Then $1^{2}+3^{2}+\cdots+(2 k+1)^{2}+[2(k+1)+$ $1]^{2}=(k+1)(2 k+1)(2 k+3) / 3+(2 k+3)^{2}=(2 k+3)[(k+$ 1) $(2 k+1) / 3+(2 k+3)]=(2 k+3)\left(2 k^{2}+9 k+10\right) / 3=(2 k+$ 3) $(2 k+5)(k+2) / 3=[(k+1)+1][2(k+1)+1][2(k+1)+3] / 3$. 7. Let $P(n)$ be " $\sum_{j=0}^{n} 3 \cdot 5^{j}=3\left(5^{n+1}-1\right) / 4$." Basis step: $P(0)$ is true because $\sum_{j=0}^{0} 3 \cdot 5^{j}=3=3\left(5^{1}-1\right) / 4$. Inductive step: Assume that $\sum_{j=0}^{k} 3 \cdot 5^{j}=3\left(5^{k+1}-1\right) / 4$. Then $\sum_{j=0}^{k+1} 3 \cdot 5^{j}=\left(\sum_{j=0}^{k} 3 \cdot 5^{j}\right)+3 \cdot 5^{k+1}=3\left(5^{k+1}-\right.$ 1) $/ 4+3 \cdot 5^{k+1}=3\left(5^{k+1}+4 \cdot 5^{k+1}-1\right) / 4=3\left(5^{k+2}-1\right) / 4$. 9. a) $2+4+6+\cdots+2 n=n(n+1)$ b) Basis step: $2=1 \cdot(1+1)$ is true. Inductive step: Assume that $2+4+6+\cdots+2 k=$ $k(k+1)$. Then $(2+4+6+\cdots+2 k)+2(k+1)=$ $k(k+1)+2(k+1)=(k+1)(k+2)$. 11. a) $\sum_{j=1}^{n} 1 / 2^{j}=$ $\left(2^{n}-1\right) / 2^{n} \quad$ b) Basis step: $P(1)$ is true because $\frac{1}{2}=\left(2^{1}-\right.$ 1) $/ 2^{1}$. Inductive step: Assume that $\sum_{j=1}^{k} 1 / 2^{j}=\left(2^{k}-1\right) / 2^{k}$. Then $\sum_{j=1}^{k+1} \frac{1}{2^{j}}=\left(\sum_{j=1}^{k} \frac{1}{2^{j}}\right)+\frac{1}{2^{k+1}}=\frac{2^{k}-1}{2^{k}}+\frac{1}{2^{k+1}}=$ $\frac{2^{k+1}-2+1}{2^{k+1}}=\frac{2^{k+1}-1}{2^{k+1}}$. 13. Let $P(n)$ be " $1^{2}-2^{2}+3^{2}-$ $\cdots+(-1)^{n-1} n^{2}=(-1)^{n-1} n(n+1) / 2$." Basis step: $P(1)$ is true because $1^{2}=1=(-1)^{0} 1^{2}$. Inductive step: Assume that $P(k)$ is true. Then $1^{2}-2^{2}+3^{2}-\cdots+(-1)^{k-1} k^{2}+$ $(-1)^{k}(k+1)^{2}=(-1)^{k-1} k(k+1) / 2+(-1)^{k}(k+1)^{2}=$ $(-1)^{k}(k+1)[-k / 2+(k+1)]=(-1)^{k}(k+1)[(k / 2)+1]=$ $(-1)^{k}(k+1)(k+2) / 2$. 15. Let $P(n)$ be " $1 \cdot 2+2 \cdot 3+\cdots+$ $n(n+1)=n(n+1)(n+2) / 3$." Basis step: $P(1)$ is true because
$1 \cdot 2=2=1(1+1)(1+2) / 3$. Inductive step: Assume that $P(k)$ is true. Then $1 \cdot 2+2 \cdot 3+\cdots+k(k+1)+(k+1)(k+2)=[k(k+$ 1) $(k+2) / 3]+(k+1)(k+2)=(k+1)(k+2)[(k / 3)+1]=$ $(k+1)(k+2)(k+3) / 3$. 17. Let $P(n)$ be the statement that $1^{4}+2^{4}+3^{4}+\cdots+n^{4}=n(n+1)(2 n+1)\left(3 n^{2}+3 n-1\right) / 30$. $P(1)$ is true because $1 \cdot 2 \cdot 3 \cdot 5 / 30=1$. Assume that $P(k)$ is true. Then $\left(1^{4}+2^{4}+3^{4}+\cdots+k^{4}\right)+(k+1)^{4}=$ $k(k+1)(2 k+1)\left(3 k^{2}+3 k-1\right) / 30+(k+1)^{4}=[(k+$ 1) $/ 30]\left[k(2 k+1)\left(3 k^{2}+3 k-1\right)+30(k+1)^{3}\right]=[(k+$ 1) $/ 30]\left(6 k^{4}+39 k^{3}+91 k^{2}+89 k+30\right)=[(k+1) / 30](k+$ 2) $(2 k+3)\left[3(k+1)^{2}+3(k+1)-1\right]$. This demonstrates that $P(k+1)$ is true. $\quad 19$. a) $1+\frac{1}{4}<2-\frac{1}{2} \quad$ b) This is true because $5 / 4$ is less than $6 / 4$. c) $1+\frac{1}{4}+\cdots+\frac{1}{k^{2}}<2-\frac{1}{k}$ d) For each $k \geq 2$ that $P(k)$ implies $P(k+1)$; in other words, we want to show that assuming the inductive hypothesis [see part (c)] we can show $1+\frac{1}{4}+\cdots+\frac{1}{k^{2}}+\frac{1}{\left(k_{1}+1\right)^{2}}<2-\frac{1}{k+1}$
e) $1+\frac{1}{4}+\cdots+\frac{1}{k^{2}}+\frac{1}{(k+1)^{2}}<2-\frac{1}{(k+1)^{2}}=$ e) $1+\frac{1}{4}+\cdots+\frac{1}{k^{2}}+\frac{1}{(k+1)^{2}}<2-\frac{1}{k}+\frac{1}{(k+1)^{2}}=$
$2-\left[\frac{1}{k}-\frac{1}{1(k+1)}\right]=2-\left[\frac{k^{2}+2 k+1-k}{2}\right]=2-\frac{k^{2}+k}{}=\frac{1}{1)^{2}}=$ $2-\frac{1}{k+1}-\frac{1}{k(k+1)^{2}}<2-\frac{1}{k+1} \quad$ f) We have completed both the basis step and the inductive step, so by the principle of mathematical induction, the statement is true for every integer n greater than 1. 21. Let $P(n)$ be " $2^{n}>n^{2}$." Basis step: $P(5)$ is true because $2^{5}=32>25=5^{2}$. Inductive step: Assume that $P(k)$ is true, that is, $2^{k}>k^{2}$. Then $2^{k+1}=2 \cdot 2^{k}>k^{2}+k^{2}>k^{2}+4 k \geq k^{2}+2 k+1=(k+1)^{2}$ because $k>4$. 23. By inspection we find that the inequality $2 n+3 \leq 2^{n}$ does not hold for $n=0,1,2,3$. Let $P(n)$ be the proposition that this inequality holds for the positive integer n. $P(4)$, the basis case, is true because $2 \cdot 4+3=11 \leq 16=2^{4}$. For the inductive step assume that $P(k)$ is true. Then, by the inductive hypothesis, $2(k+1)+3=(2 k+3)+2<2^{k}+2$. Butbecause $k \geq 1,2^{k}+2 \leq 2^{k}+2^{k}=2^{k+1}$. This shows that $P(k+1)$ is true. 25. Let $P(n)$ be " $1+n h \leq(1+h)^{n}, h>-1$." Basis step: $P(0)$ is true because $1+0 \cdot h=1 \leq 1=(1+h)^{0}$. Inductive step: Assume $1+k h \leq(1+h)^{k}$. Then because $(1+h)>0,(1+h)^{k+1}=(1+h)(1+h)^{k} \geq(1+h)(1+k h)=$ $1+(k+1) h+k h^{2} \geq 1+(k+1) h$. 27. Let $P(n)$ be $" 1 / \sqrt{1}+1 / \sqrt{2}+1 / \sqrt{3}+\cdots+1 / \sqrt{n}>2(\sqrt{n+1}-1)$." Basis step: $P(1)$ is true because $1>2(\sqrt{2}-1)$. Inductive step: Assume that $P(k)$ is true. Then $1+1 / \sqrt{2}+\cdots+$ $1 / \sqrt{k}+1 / \sqrt{k+1}>2(\sqrt{k+1}-1)+1 / \sqrt{k+1}$. If we show that $2(\sqrt{k+1}-1)+1 / \sqrt{k+1}>2(\sqrt{k+2}-1)$, it follows that $P(k+1)$ is true. This inequality is equivalent to $2(\sqrt{k+2}-\sqrt{k+1})<1 / \sqrt{k+1}$, which is equivalent to $2(\sqrt{k+2}-\sqrt{k+1})(\sqrt{k+2}+\sqrt{k+1})<$ $\sqrt{k+1} / \sqrt{k+1}+\sqrt{k+2} / \sqrt{k+1}$. This is equivalent to $2<1+\sqrt{k+2} / \sqrt{k+1}$, which is clearly true. 29. Let $P(n)$ be " $H_{2}{ }^{n} \leq 1+n$." Basis step: $P(0)$ is true because $H_{2^{0}}=H_{1}=1 \leq 1+0$. Inductive step: Assume that $H_{2^{k}} \leq 1+k$. Then $H_{2^{k+1}}=H_{2^{k}}+\sum_{j=2^{k}+1}^{2^{k+1}} \frac{1}{j} \leq$ $1+k+2^{k}\left(\frac{1}{2^{k+1}}\right)<1+k+1=1+(k+1)$. 31. Basis step: $1^{2}+1=2$ is divisible by 2 . Inductive step: Assume the inductive hypothesis, that $k^{2}+k$ is divisible by 2 . Then $(k+1)^{2}+(k+1)=k^{2}+2 k+1+k+1=\left(k^{2}+k\right)+2(k+1)$,
the sum of a multiple of 2 (by the inductive hypothesis) and a multiple of 2 (by definition), hence, divisible by 2 . 33. Let $P(n)$ be " $n^{5}-n$ is divisible by 5 ." Basis step: $P(0)$ is true because $0^{5}-0=0$ is divisible by 5 . Inductive step: Assume that $P(k)$ is true, that is, $k^{5}-5$ is divisible by 5 . Then $(k+1)^{5}-(k+1)=\left(k^{5}+5 k^{4}+10 k^{3}+10 k^{2}+5 k+1\right)-(k+1)=$ $\left(k^{5}-k\right)+5\left(k^{4}+2 k^{3}+2 k^{2}+k\right)$ is also divisible by 5 , because both terms in this sum are divisible by 5. 35. Let $P(n)$ be the proposition that $(2 n-1)^{2}-1$ is divisible by 8. The basis case $P(1)$ is true because $8 \mid 0$. Now assume that $P(k)$ is true. Because $\left[(2(k+1)-1]^{2}-1=\right.$ $\left[(2 k-1)^{2}-1\right]+8 k, P(k+1)$ is true because both terms on the right-hand side are divisible by 8 . This shows that $P(n)$ is true for all positive integers n, so $m^{2}-1$ is divisible by 8 whenever m is an odd positive integer. 37. Basis step: $11^{1+1}+12^{2 \cdot 1-1}=121+12=133$ Inductive step: Assume the inductive hypothesis, that $11^{n+1}+12^{2 n-1}$ is divisible by 133 . Then $11^{(n+1)+1}+12^{2(n+1)-1}=11 \cdot 11^{n+1}+144 \cdot 12^{2 n-1}=$ $11 \cdot 11^{n+1}+(11+133) \cdot 12^{2 n-1}=11\left(11^{n+1}+12^{2 n-1}\right)+$ $133 \cdot 12^{2 n-1}$. The expression in parentheses is divisible by 133 by the inductive hypothesis, and obviously the second term is divisible by 133 , so the entire quantity is divisible by 133, as desired. 39. Basis step: $A_{1} \subseteq B_{1}$ tautologically implies that $\bigcap_{j=1}^{1} A_{j} \subseteq \bigcap_{j=1}^{1} B_{j}$. Inductive step: Assume the inductive hypothesis that if $A_{j} \subseteq B_{j}$ for $j=1,2, \ldots, k$, then $\bigcap_{j=1}^{k} A_{j} \subseteq \bigcap_{j=1}^{k} B_{j}$. We want to show that if $A_{j} \subseteq B_{j}$ for $j=1,2, \ldots, k+1$, then $\bigcap_{j=1}^{k+1} A_{j} \subseteq \bigcap_{j=1}^{k+1} B_{j}$. Let x be an arbitrary element of $\bigcap_{j=1}^{k+1} A_{j}=\left(\bigcap_{j=1}^{k} A_{j}\right) \cap A_{k+1}$. Because $x \in \bigcap_{j=1}^{k} A_{j}$, we know by the inductive hypothesis that $x \in \bigcap_{j=1}^{k} B_{j}$; because $x \in A_{k+1}$, we know from the given fact that $A_{k+1} \subseteq B_{k+1}$ that $x \in B_{k+1}$. Therefore, $x \in\left(\bigcap_{j=1}^{k} B_{j}\right) \cap B_{k+1}=\bigcap_{j=1}^{k+1} B_{j}$. 41. Let $P(n)$ be $"\left(A_{1} \cup A_{2} \cup \cdots \cup A_{n}\right) \cap B=\left(A_{1} \cap B\right) \cup\left(A_{2} \cap B\right) \cup \cdots \cup\left(A_{n} \cap\right.$ $B)$." Basis step: $P(1)$ is trivially true. Inductive step: Assume that $P(k)$ is true. Then $\left(A_{1} \cup A_{2} \cup \cdots \cup A_{k} \cup A_{k+1}\right) \cap B=$ $\left[\left(A_{1} \cup A_{2} \cup \cdots \cup A_{k}\right) \cup A_{k+1}\right] \cap B=\left[\left(A_{1} \cup A_{2} \cup \cdots \cup A_{k}\right) \cap\right.$ $B] \cup\left(A_{k+1} \cap B\right)=\left[\left(A_{1} \cap B\right) \cup\left(A_{2} \cap B\right) \cup \cdots \cup\left(A_{k} \cap\right.\right.$ $B)] \cup\left(A_{k+1} \cap B\right)=\left(A_{1} \cap B\right) \cup\left(\underline{\left.A_{2} \cap B\right)} \cup \cdots \cup\left(A_{k} \cap\right.\right.$ B) $\cup\left(A_{k+1} \cap B\right)$. 43. Let $P(n)$ be " $\overline{\bigcup_{k=1}^{n} A_{k}}=\bigcap_{k=1}^{n} \overline{A_{k}}$., Basis step: $P(1)$ is trivially true. Inductive step: Assume that $P(k)$ is true. Then $\overline{\bigcup_{j=1}^{k+1} A_{j}}=\overline{\left(\bigcup_{j=1}^{k} A_{j}\right) \cup A_{k+1}}=$ $\overline{\left(\bigcup_{j=1}^{k} A_{j}\right)} \cap \overline{A_{k+1}}=\left(\bigcap_{j=1}^{k} \overline{A_{j}}\right) \cap \overline{A_{k+1}}=\bigcap_{j=1}^{k+1} \overline{A_{j}}$. 45. Let $P(n)$ be the statement that a set with n elements has $n(n-1) / 2$ two-element subsets. $P(2)$, the basis case, is true, because a set with two elements has one subset with two elements-namely, itself—and $2(2-1) / 2=1$. Now assume that $P(k)$ is true. Let S be a set with $k+1$ elements. Choose an element a in S and let $T=S-\{a\}$. A two-element subset of S either contains a or does not. Those subsets not containing a are the subsets of T with two elements; by the inductive hypothesis there are $k(k-1) / 2$ of these. There are k subsets of S with two elements that contain a, because such a subset contains a and one of the k elements in T. Hence, there are $k(k-1) / 2+k=(k+1) k / 2$ two-element subsets of S. This
completes the inductive proof. 47. Reorder the locations if necessary so that $x_{1} \leq x_{2} \leq x_{3} \leq \cdots \leq x_{d}$. Place the first tower at position $t_{1}=x_{1}+1$. Assume tower k has been placed at position t_{k}. Then place tower $k+1$ at position $t_{k+1}=x+1$, where x is the smallest x_{i} greater than $t_{k}+1 . \quad 49$. The two sets do not overlap if $n+1=2$. In fact, the conditional statement $P(1) \rightarrow P(2)$ is false. 51. The mistake is in applying the inductive hypothesis to look at $\max (x-1, y-1)$, because even though x and y are positive integers, $x-1$ and $y-1$ need not be (one or both could be 0). 53. For the basis step ($n=2$) the first person cuts the cake into two portions that she thinks are each $1 / 2$ of the cake, and the second person chooses the portion he thinks is at least $1 / 2$ of the cake (at least one of the pieces must satisfy that condition). For the inductive step, suppose there are $k+1$ people. By the inductive hypothesis, we can suppose that the first k people have divided the cake among themselves so that each person is satisfied that he got at least a fraction $1 / k$ of the cake. Each of them now cuts his or her piece into $k+1$ pieces of equal size. The last person gets to choose one piece from each of the first k people's portions. After this is done, each of the first k people is satisfied that she still has $(1 / k)(k /(k+1))=1 /(k+1)$ of the cake. To see that the last person is satisfied, suppose that he thought that the i th person $(1 \leq i \leq k)$ had a portion p_{i} of the cake, where $\sum_{i=1}^{k} p_{i}=\overline{1}$. By choosing what he thinks is the largest piece from each person, he is satisfied that he has at least $\sum_{i=1}^{k} p_{i} /(k+1)=(1 /(k+1)) \sum_{i=1}^{k} p_{i}=1 /(k+1)$ of the cake. 55. We use the notation (i, j) to mean the square in row i and column j and use induction on $i+j$ to show that every square can be reached by the knight. Basis step: There are six base cases, for the cases when $i+j \leq 2$. The knight is already at $(0,0)$ to start, so the empty sequence of moves reaches that square. To reach $(1,0)$, the knight moves $(0,0) \rightarrow(2,1) \rightarrow(0,2) \rightarrow(1,0)$. Similarly, to reach $(0,1)$, the knight moves $(0,0) \rightarrow(1,2) \rightarrow(2,0) \rightarrow(0,1)$. Note that the knight has reached $(2,0)$ and $(0,2)$ in the process. For the last basis step there is $(0,0) \rightarrow(1,2) \rightarrow(2,0) \rightarrow$ $(0,1) \rightarrow(2,2) \rightarrow(0,3) \rightarrow(1,1)$. Inductive step: Assume the inductive hypothesis, that the knight can reach any square (i, j) for which $i+j=k$, where k is an integer greater than 1 . We must show how the knight can reach each square (i, j) when $i+j=k+1$. Because $k+1 \geq 3$, at least one of i and j is at least 2 . If $i \geq 2$, then by the inductive hypothesis, there is a sequence of moves ending at $(i-2, j+1)$, because $i-2+j+1=i+j-1=k$; from there it is just one step to (i, j); similarly, if $j \geq 2$. 57. Basis step: The base cases $n=0$ and $n=1$ are true because the derivative of x^{0} is 0 and the derivative of $x^{1}=x$ is 1 . Inductive step: Using the product rule, the inductive hypothesis, and the basis step shows that $\frac{d}{d x} x^{k+1}=\frac{d}{d x}\left(x \cdot x^{k}\right)=$ $x \cdot \frac{d}{d x} x^{k}+x^{k} \frac{d}{d x} x=x \cdot k x^{k-1}+x^{k} \cdot 1=k x^{k}+x^{k}=(k+1) x^{k}$. 59. Basis step: For $k=0,1 \equiv 1(\bmod m)$. Inductive step: Suppose that $a \equiv b(\bmod m)$ and $a^{k} \equiv b^{k}(\bmod m)$; we must show that $a^{k+1} \equiv b^{k+1}(\bmod m)$. By Theorem 5 from Section 4.1, $a \cdot a^{k} \equiv b \cdot b^{k}(\bmod m)$, which by defini-
