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Answers to Odd-Numbered Exercises S-29

3 are relatively prime to 10. Therefore the sum can no longer
be 0 modulo 10. 45. Working modulo 10, solve for d9.
The check digit for 11100002 is 5. 47. PLEASE SEND
MONEY 49. a) QAL HUVEM AT WVESGB b) QXB
EVZZL ZEVZZRFS

CHAPTER 5

Section 5.1

1. Let P(n) be the statement that the train stops at sta-
tion n. Basis step: We are told that P(1) is true. Induc-
tive step: We are told that P(n) implies P(n + 1) for each
n ≥ 1. Therefore by the principle of mathematical induc-
tion, P(n) is true for all positive integers n. 3. a) 12 =
1 · 2 · 3/6 b) Both sides of P(1) shown in part (a) equal 1.
c) 12 + 22 + · · · + k2 = k(k + 1)(2k + 1)/6 d) For each
k ≥ 1 that P(k) implies P(k + 1); in other words, that as-
suming the inductive hypothesis [see part (c)] we can show
12 + 22 + · · · + k2 + (k + 1)2 = (k + 1)(k + 2)(2k + 3)/6
e) (12 + 22 + · · · + k2) + (k + 1)2 = [k(k + 1)(2k +
1)/6] + (k + 1)2 = [(k + 1)/6][k(2k + 1) + 6(k +
1)] = [(k + 1)/6](2k2 + 7k + 6) = [(k + 1)/6](k +
2)(2k+3) = (k+1)(k+2)(2k+3)/6 f) We have completed
both the basis step and the inductive step, so by the principle
of mathematical induction, the statement is true for every pos-
itive integer n. 5. Let P(n) be “12+32+· · ·+ (2n+1)2 =
(n+ 1)(2n+ 1)(2n+ 3)/3.” Basis step: P(0) is true because
12 = 1 = (0+1)(2·0+1)(2·0+3)/3. Inductive step:Assume
that P(k) is true. Then 12+32+· · ·+ (2k+1)2+[2(k+1)+
1]2 = (k+1)(2k+1)(2k+3)/3+ (2k+3)2 = (2k+3)[(k+
1)(2k+1)/3+(2k+3)] = (2k+3)(2k2+9k+10)/3 = (2k+
3)(2k+5)(k+2)/3= [(k+1)+1][2(k+1)+1][2(k+1)+3]/3.
7. Let P(n) be “

∑n
j=0 3 · 5j = 3(5n+1 − 1)/4.” Basis step:

P(0) is true because
∑0

j=0 3 · 5j = 3 = 3(51 − 1)/4.

Inductive step: Assume that
∑k

j=0 3 · 5j = 3(5k+1 − 1)/4.

Then
∑k+1

j=0 3 · 5j = (
∑k

j=0 3 · 5j ) + 3 · 5k+1 = 3(5k+1 −
1)/4+ 3 · 5k+1 = 3(5k+1+ 4 · 5k+1− 1)/4 = 3(5k+2− 1)/4.
9. a) 2+4+6+· · ·+2n= n(n+1) b) Basis step: 2= 1·(1+1)

is true. Inductive step: Assume that 2 + 4 + 6 + · · · + 2k =
k(k + 1). Then (2 + 4 + 6 + · · · + 2k) + 2(k + 1) =
k(k+1)+2(k+1) = (k+1)(k+2). 11. a)

∑n
j=1 1/2j =

(2n − 1)/2n b) Basis step: P(1) is true because 1
2 = (21−

1)/21. Inductive step:Assume that
∑k

j=1 1/2j = (2k−1)/2k .

Then
∑k+1

j=1
1

2j = (
∑k

j=1
1

2j ) + 1
2k+1 = 2k−1

2k + 1
2k+1 =

2k+1−2+1
2k+1 = 2k+1−1

2k+1 . 13. Let P(n) be “12 − 22 + 32 −
· · · + (−1)n−1n2 = (−1)n−1n(n + 1)/2.” Basis step: P(1)

is true because 12 = 1 = (−1)012. Inductive step: Assume
that P(k) is true. Then 12 − 22 + 32 − · · · + (−1)k−1k2 +
(−1)k(k + 1)2 = (−1)k−1k(k + 1)/2 + (−1)k(k + 1)2 =
(−1)k(k+ 1)[−k/2+ (k+ 1)] = (−1)k(k+ 1)[(k/2)+ 1] =
(−1)k(k+1)(k+2)/2. 15. Let P(n) be “1 ·2+2 ·3+· · ·+
n(n+1)= n(n+1)(n+2)/3.” Basis step: P(1) is true because

1·2= 2= 1(1+1)(1+2)/3. Inductive step:Assume that P(k)

is true. Then 1·2+2·3+· · ·+k(k+1)+(k+1)(k+2)= [k(k+
1)(k+ 2)/3]+ (k+ 1)(k+ 2) = (k+ 1)(k+ 2)[(k/3)+ 1] =
(k+1)(k+2)(k+3)/3. 17. Let P(n) be the statement that
14+24+34+· · · + n4 = n(n+1)(2n+1)(3n2+3n−1)/30.
P(1) is true because 1 · 2 · 3 · 5/30 = 1. Assume that P(k)

is true. Then (14 + 24 + 34 + · · · + k4) + (k + 1)4 =
k(k + 1)(2k + 1)(3k2 + 3k − 1)/30 + (k + 1)4 = [(k +
1)/30][k(2k + 1)(3k2 + 3k − 1) + 30(k + 1)3] = [(k +
1)/30](6k4 + 39k3 + 91k2 + 89k + 30) = [(k + 1)/30](k +
2)(2k+ 3)[3(k+ 1)2+ 3(k+ 1)− 1]. This demonstrates that
P(k + 1) is true. 19. a) 1 + 1

4 < 2 − 1
2 b) This is true

because 5/4 is less than 6/4. c) 1+ 1
4 + · · · + 1

k2 < 2 − 1
k

d) For each k ≥ 2 that P(k) implies P(k+1); in other words,
we want to show that assuming the inductive hypothesis [see
part (c)] we can show 1+ 1

4 + · · · + 1
k2 + 1

(k+1)2 < 2− 1
k+1

e) 1+ 1
4+ · · · + 1

k2 + 1
(k+1)2 < 2 − 1

k
+ 1

(k+1)2 =
2−[ 1

k
− 1

(k+1)2

] = 2−[ k2+2k+1−k
k(k+1)2

] = 2− k2+k
k(k+1)2 − 1

k(k+1)2 =
2 − 1

k+1 − 1
k(k+1)2 < 2 − 1

k+1 f) We have completed both
the basis step and the inductive step, so by the principle of
mathematical induction, the statement is true for every inte-
ger n greater than 1. 21. Let P(n) be “2n > n2.” Basis
step: P(5) is true because 25 = 32 > 25 = 52. Induc-
tive step: Assume that P(k) is true, that is, 2k > k2. Then
2k+1 = 2 · 2k > k2+ k2 > k2+ 4k ≥ k2+ 2k+ 1 = (k+ 1)2

because k > 4. 23. By inspection we find that the inequality
2n+ 3 ≤ 2n does not hold for n = 0, 1, 2, 3. Let P(n) be the
proposition that this inequality holds for the positive integer n.
P(4), the basis case, is true because 2 ·4+3 = 11 ≤ 16 = 24.
For the inductive step assume that P(k) is true. Then, by the in-
ductive hypothesis, 2(k+1)+3= (2k+3)+2 < 2k+2. But be-
cause k ≥ 1, 2k+2 ≤ 2k+2k = 2k+1. This shows that P(k+1)

is true. 25. Let P(n) be “1 + nh ≤ (1 + h)n, h > −1.”
Basis step: P(0) is true because 1+0 ·h = 1 ≤ 1 = (1+h)0.
Inductive step: Assume 1 + kh ≤ (1 + h)k . Then because
(1+h) > 0, (1+h)k+1 = (1+h)(1+h)k ≥ (1+h)(1+kh) =
1 + (k + 1)h + kh2 ≥ 1 + (k + 1)h. 27. Let P(n) be
“1/
√

1 + 1/
√

2 + 1/
√

3 + · · · + 1/
√

n > 2
(√

n+ 1− 1
)
.”

Basis step: P(1) is true because 1 > 2
(√

2− 1
)
. Induc-

tive step: Assume that P(k) is true. Then 1 + 1/
√

2 + · · · +
1/
√

k + 1/
√

k + 1 > 2
(√

k + 1− 1
) + 1/

√
k + 1. If we

show that 2
(√

k + 1− 1
) + 1/

√
k + 1 > 2

(√
k + 2− 1

)
,

it follows that P(k + 1) is true. This inequality is equiv-
alent to 2

(√
k + 2−√k + 1

)
< 1/

√
k + 1, which is

equivalent to 2
(√

k + 2−√k + 1
) (√

k + 2+ √
k + 1

)
<√

k + 1/
√

k + 1 + √
k + 2/

√
k + 1. This is equivalent to

2 < 1 + √k + 2/
√

k + 1, which is clearly true. 29. Let
P(n) be “H2n ≤ 1 + n.” Basis step: P(0) is true be-
cause H20 = H1 = 1 ≤ 1 + 0. Inductive step: Assume
that H2k ≤ 1 + k. Then H2k+1 = H2k+∑2k+1

j=2k+1
1
j
≤

1 + k + 2k
(

1
2k+1

)
< 1 + k + 1 = 1 + (k + 1). 31. Basis

step: 12 + 1 = 2 is divisible by 2. Inductive step: Assume
the inductive hypothesis, that k2 + k is divisible by 2. Then
(k+1)2+(k+1) = k2+2k+1+k+1 = (k2+k)+2(k+1),
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the sum of a multiple of 2 (by the inductive hypothesis) and a
multiple of 2 (by definition), hence, divisible by 2. 33. Let
P(n) be “n5 − n is divisible by 5.” Basis step: P(0) is true
because 05 − 0 = 0 is divisible by 5. Inductive step: As-
sume that P(k) is true, that is, k5 − 5 is divisible by 5. Then
(k+1)5−(k+1)= (k5+5k4+10k3+10k2+5k+1)−(k+1)=
(k5 − k) + 5(k4 + 2k3 + 2k2 + k) is also divisible by 5,
because both terms in this sum are divisible by 5. 35. Let
P(n) be the proposition that (2n − 1)2 − 1 is divisible by
8. The basis case P(1) is true because 8 | 0. Now as-
sume that P(k) is true. Because [(2(k + 1) − 1]2 − 1 =
[(2k− 1)2 − 1] + 8k, P (k+ 1) is true because both terms on
the right-hand side are divisible by 8. This shows that P(n)

is true for all positive integers n, so m2 − 1 is divisible by
8 whenever m is an odd positive integer. 37. Basis step:
111+1+122·1−1 = 121+12 = 133 Inductive step:Assume the
inductive hypothesis, that 11n+1+122n−1 is divisible by 133.
Then 11(n+1)+1 + 122(n+1)−1 = 11 · 11n+1 + 144 · 122n−1 =
11 · 11n+1 + (11+ 133) · 122n−1 = 11(11n+1 + 122n−1)+
133 · 122n−1. The expression in parentheses is divisible by
133 by the inductive hypothesis, and obviously the second
term is divisible by 133, so the entire quantity is divisible by
133, as desired. 39. Basis step: A1 ⊆ B1 tautologically im-
plies that

⋂1
j=1 Aj ⊆⋂1

j=1 Bj . Inductive step: Assume the
inductive hypothesis that if Aj ⊆ Bj for j = 1, 2, . . . , k,
then

⋂k
j=1 Aj ⊆⋂k

j=1 Bj . We want to show that if Aj ⊆ Bj

for j = 1, 2, . . . , k + 1, then
⋂k+1

j=1 Aj ⊆⋂k+1
j=1 Bj . Let x

be an arbitrary element of
⋂k+1

j=1 Aj =
(⋂k

j=1 Aj

)
∩ Ak+1.

Because x ∈ ⋂k
j=1 Aj , we know by the inductive hypothe-

sis that x ∈ ⋂k
j=1 Bj ; because x ∈ Ak+1, we know from

the given fact that Ak+1 ⊆ Bk+1 that x ∈ Bk+1. There-
fore, x ∈

(⋂k
j=1 Bj

)
∩Bk+1 =⋂k+1

j=1 Bj . 41. Let P(n) be
“(A1∪A2∪· · ·∪An)∩B = (A1∩B)∪(A2∩B)∪· · ·∪(An ∩
B).” Basis step: P(1) is trivially true. Inductive step: Assume
that P(k) is true. Then (A1 ∪ A2 ∪ · · · ∪ Ak ∪ Ak+1) ∩ B =
[(A1∪A2∪· · ·∪Ak)∪Ak+1]∩B = [(A1∪A2∪· · ·∪Ak)∩
B] ∪ (Ak+1 ∩ B) = [(A1 ∩ B) ∪ (A2 ∩ B) ∪ · · · ∪ (Ak ∩
B)] ∪ (Ak+1 ∩ B) = (A1 ∩ B) ∪ (A2 ∩ B) ∪· · ·∪ (Ak ∩
B)∪ (Ak+1 ∩B). 43. Let P(n) be “

⋃n
k=1 Ak =⋂n

k=1 Ak .”
Basis step: P(1) is trivially true. Inductive step: Assume that

P(k) is true. Then
⋃k+1

j=1 Aj =
(⋃k

j=1 Aj

)
∪ Ak+1 =

(⋃k
j=1 Aj

)
∩ Ak+1 =

(⋂k
j=1 Aj

)
∩ Ak+1 = ⋂k+1

j=1 Aj .

45. Let P(n) be the statement that a set with n elements has
n(n− 1)/2 two-element subsets. P(2), the basis case, is true,
because a set with two elements has one subset with two
elements—namely, itself—and 2(2 − 1)/2 = 1. Now as-
sume that P(k) is true. Let S be a set with k + 1 elements.
Choose an element a in S and let T = S−{a}. A two-element
subset of S either contains a or does not. Those subsets not
containing a are the subsets of T with two elements; by the
inductive hypothesis there are k(k−1)/2 of these. There are k

subsets of S with two elements that contain a, because such a
subset contains a and one of the k elements in T . Hence, there
are k(k−1)/2+k = (k+1)k/2 two-element subsets of S. This

completes the inductive proof. 47. Reorder the locations if
necessary so that x1 ≤ x2 ≤ x3 ≤ · · · ≤ xd . Place the first
tower at position t1 = x1+1. Assume tower k has been placed
at position tk . Then place tower k+1 at position tk+1 = x+1,
where x is the smallest xi greater than tk + 1. 49. The two
sets do not overlap if n+ 1 = 2. In fact, the conditional state-
ment P(1)→ P(2) is false. 51. The mistake is in applying
the inductive hypothesis to look at max(x−1, y−1), because
even though x and y are positive integers, x − 1 and y − 1
need not be (one or both could be 0). 53. For the basis step
(n = 2) the first person cuts the cake into two portions that she
thinks are each 1/2 of the cake, and the second person chooses
the portion he thinks is at least 1/2 of the cake (at least one of
the pieces must satisfy that condition). For the inductive step,
suppose there are k + 1 people. By the inductive hypothesis,
we can suppose that the first k people have divided the cake
among themselves so that each person is satisfied that he got
at least a fraction 1/k of the cake. Each of them now cuts his
or her piece into k+1 pieces of equal size. The last person gets
to choose one piece from each of the first k people’s portions.
After this is done, each of the first k people is satisfied that
she still has (1/k)(k/(k + 1)) = 1/(k + 1) of the cake. To
see that the last person is satisfied, suppose that he thought
that the ith person (1 ≤ i ≤ k) had a portion pi of the
cake, where

∑k
i=1 pi = 1. By choosing what he thinks is the

largest piece from each person, he is satisfied that he has at
least

∑k
i=1 pi/(k+1) = (1/(k+1))

∑k
i=1 pi = 1/(k+1) of

the cake. 55. We use the notation (i, j) to mean the square
in row i and column j and use induction on i+ j to show that
every square can be reached by the knight. Basis step: There
are six base cases, for the cases when i + j ≤ 2. The
knight is already at (0, 0) to start, so the empty sequence of
moves reaches that square. To reach (1, 0), the knight moves
(0, 0)→ (2, 1)→ (0, 2)→ (1, 0). Similarly, to reach (0, 1),
the knight moves (0, 0) → (1, 2) → (2, 0) → (0, 1). Note
that the knight has reached (2, 0) and (0, 2) in the process.
For the last basis step there is (0, 0) → (1, 2) → (2, 0) →
(0, 1) → (2, 2) → (0, 3) → (1, 1). Inductive step: Assume
the inductive hypothesis, that the knight can reach any square
(i, j) for which i + j = k, where k is an integer greater
than 1. We must show how the knight can reach each square
(i, j) when i + j = k + 1. Because k + 1 ≥ 3, at least one
of i and j is at least 2. If i ≥ 2, then by the inductive hypoth-
esis, there is a sequence of moves ending at (i − 2, j + 1),
because i − 2 + j + 1 = i + j − 1 = k; from there
it is just one step to (i, j); similarly, if j ≥ 2. 57. Basis
step: The base cases n = 0 and n = 1 are true because
the derivative of x0 is 0 and the derivative of x1 = x is 1.
Inductive step: Using the product rule, the inductive hypoth-
esis, and the basis step shows that d

dx
xk+1 = d

dx
(x · xk) =

x · d
dx

xk+xk d
dx

x = x ·kxk−1+xk ·1 = kxk+xk = (k+1)xk .
59. Basis step: For k = 0, 1 ≡ 1 (mod m). Inductive step:
Suppose that a ≡ b (mod m) and ak ≡ bk (mod m); we
must show that ak+1 ≡ bk+1 (mod m). By Theorem 5 from
Section 4.1, a · ak ≡ b · bk (mod m), which by defini-


