A) Fibonacci's Number

\[F_n \text{ are defined using:} \]

- **Basis step:** \(F_0 = 0; \quad F_1 = 1 \)
- **Inductive step:** \(F_n = F_{n-1} + F_{n-2} \)

Example:

Show that \(F_n \leq 2^n, \quad \forall n \geq 1 \)

Proof by induction:

Let us define:

- **LHS(n):** \(F_n \)
- **RHS(n):** \(2^n \)

P(n): \(\text{LHS}(n) \leq \text{RHS}(n) \)

Basis step: \(n = 1 \)

\[\text{LHS}(1) = F_1 = 1 \quad \text{LHS}(1) \leq \text{RHS}(1) \]
\[\text{RHS}(1) = 2^1 = 2 \quad P(1) \text{ is true.} \]

Inductive step: I want to show \(P(k-1) \land P(k) \rightarrow P(k+1) \)
What I know:

$P(k-1)$ is true: LHS$(k-1) \leq$ RHS$(k-1)$

$F_{k-1} \leq 2^{k-1}$

What I want to show:

$P(k+1)$ is true

LHS$(k+1) = F_{k+1}$

RHS$(k+1) = 2^{k+1}$

$F_{k+1} = F_k + F_{k-1}$

$F_{k+1} \leq 2^{k-1} + 2^k$

Option 1:

$2^{k-1} + 2^k = 2^{k-1} (1 + 2)$

$= 2^{k-1} \times 3$

$\leq 2^{k-1} \times 4$

$\leq 2^{k-1} \times 2^2$

$\leq 2^{k+1}$
Option 2:

Comparing $2^k - 2^{k-1}$ and 2^k

\[
2^k - 2^{k-1} = 2^{k-1} (2 - 1) = 2^{k-1}
\]

$2^k \geq 2^{k-1}$

$2^{k-1} \leq 2^k$

$2^{k-1} + 2^k \leq 2^{k+1}$

$F_{k+1} \leq 2^{k-1} + 2^k \leq 2^{k+1}$

Option 3:

$2^{m-1} \leq 2^n \quad \forall m \geq 1$

The method of proof by strong induction allows me to conclude that P_n is true, $\forall n \geq 1$.

II. Set theory.

Definition: A set is an unordered collection of objects.

Note: a) It is important to understand that the objects belong to a specified domain.

b) How do we specify a set?

3 possible representations:

- Roster
 \[S = \{ 1, 3, 5, 7, 9, 11, 13, 15, 17, 19 \} \]

- Implicit representation
 \[S = \{ 1, 3, 5, \ldots \} \quad (997, 999) \]

- Venn diagram
 \[S = \{ n \in \mathbb{Z} \mid 0 \leq n \leq 1000 \text{ and } n \text{ is odd} \} \]
To write that an object x in a domain D belongs to a set S, we write $x \in D$ and $x \in S$.

To indicate that a sub-group of objects A belongs to a set B, we write $A \subset B$.

Venn diagram:

- Let D be the domain. Let A and B be two sets in D.
- The elements of D that belong to both A and B are said to belong to the intersection of A and B, written $A \cap B$.

"element"

"subset"