I) Sets

a) Representation

\[S = \{ 2, 4, 6, \ldots, 1000 \} \]

\[S = \{ n \text{ integer} \mid 1 \leq n \leq 1000 \text{ and } n \text{ is even} \} \]

b) Domain

c) Vocabulary

- To indicate that an element \(x \) belongs to a set \(S \), we write \(x \in S \)
- \(n \in \mathbb{N} \)
- To indicate that a subset \(A \) belongs to a set \(B \), I write \(A \subset B \)

\[S = \{ a, b, c \} \]

\[a \in S \]

\[\{ a \} \subset S \]
Some special subsets:

Intersection: Given two sets A and B in the same domain D, the elements of D that belong to A and B form the intersection of A and B: $A \cap B$.

Union: Given two sets A and B in the same domain D, the elements of D that belong to A or B (or inclusion) form the union of A and B: $A \cup B$.

Complement: Given a set A in a domain D, the elements of D that do not belong to A form the complement of A (in D): \overline{A}.
Symmetric difference: Given two sets A and B in the same domain D, the element of D that are in A, a in B but not in both form the symmetric difference between A and B. $A \Delta B$

Cartesian product: When the elements of a set are formed as a list of elements in other sets A and B, we write that such an element belongs to the Cartesian product of A and B: $A \times B$

Example: a pair of integers:

$$(a, b) \in \mathbb{Z} \times \mathbb{Z}$$
$$(a, b) \in \mathbb{N} \times \mathbb{R}$$
$$(a, b) \in \mathbb{Z}^2$$
\[x \in \mathbb{R} \]

\[P : (x, y, z) \in \mathbb{R}^3 \]

Cardinality

Definition: The number of elements in a finite set \(S \) is called the cardinality of the set and is written \(|S| \).

\[S = \{ a, b, c \} \quad |S| = 3 \]

Important properties:

a) The cardinality of a Cartesian product \(A \times B \) is the product of the cardinality of \(A \) and \(B \):

\[|A \times B| = |A| \cdot |B| \]

b) The inclusion-exclusion principle:

\[|A \cup B| = |A| + |B| - |A \cap B| \]