Data, Logic, and Computing

ECS 17 (Winter 2024)
Patrice Koehl
koehl@cs.ucdavis.edu
February 23, 2024

Discussion 7: Proofs

Exercise 1

Let n be an integer. Show that if $2 n^{2}+n+9$ is odd, then n is even using an indirect proof, a proof by contradiction, and a direct proof.

This is a problem of showing a conditional $p \rightarrow q$ is true, where
$p: 2 n^{2}+n+9$ is odd
$q: n$ is even
We will use three different types of proof: indirect, proof by contradiction, and direct
a) Indirect proof: we show that $\neg q \rightarrow \neg p$ is true

Hypothesis: $\neg q$ is true, namely n is odd.
Since n is odd, there exists an integer k such that $n=2 k+1$. Therefore, $2 n^{2}+n+9=$ $2(2 k+1)^{2}+(2 k+1)+9=8 k^{2}+10 k+12=2\left(4 k^{2}+5 k+6\right)$
Since $4 k^{2}+5 k+6$ is integer, $2 n^{2}+n+9$ is even, therefore $\neg p$ is true. Therefore $\neg q \rightarrow \neg p$ is true, and $p \rightarrow q$ is true.
b) Proof by contradiction: we suppose $p \rightarrow q$ is false

Hypothesis: $p \rightarrow q$ is false, i.e. p is true AND $\neg q$ is true, namely $2 n^{2}+n+9$ is odd and n is odd.
Since n is odd, there exists an integer k such that $n=2 k+1$. Therefore, $2 n^{2}+n+9=$ $2(2 k+1)^{2}+(2 k+1)+9=8 k^{2}+10 k+12=2\left(4 k^{2}+5 k+6\right)$
Since $4 k^{2}+5 k+6$ is integer, $2 n^{2}+n+9$ is even. But we have supposed that $2 n^{2}+n+9$ is odd. We have reached a contradiction. Therefore the hypothesis we made is false, therefore $p \rightarrow q$ is true.
c) Direct proof: we show directly that $p \rightarrow q$ is true.

Hypothesis: p is true, $2 n^{2}+n+9$ is odd. Therefore there exists an integer k such that $2 n^{2}+n+9=2 k+1$, i.e. $n=2 k-2 n^{2}-8=2\left(k-n^{2}-4\right)$. Since $k-n^{2}-4$ is an integer, we conclude that 2 divides n, therefore n is even. We have showed that q is true, therefore $p \rightarrow q$ is true

Exercise 2

Let p be a natural number. Show that $2^{\frac{1}{4}}$ is irrational.
We use a proof by contradiction: let us suppose that $2^{\frac{1}{4}}$ is a rational number. There exists two integers a and b, with $b \neq 0$ such that

$$
\begin{equation*}
2^{\frac{1}{4}}=\frac{a}{b} \tag{1}
\end{equation*}
$$

After raising this equation to the power 2, we get:

$$
\begin{equation*}
\sqrt{2}=\frac{a^{2}}{b^{2}} \tag{2}
\end{equation*}
$$

As a and b are integers; a^{2} and b^{2} are integers, with $b^{2} \neq 0$. The equation above would then mean that $\sqrt{2}$ is rational; this is not true. Therefore $2^{\frac{1}{4}}$ is irrational.

Exercise 3

Let a and b be two integers. Show that if either $a b$ or $a+b$ is odd, then either a or b is odd
This is an implication of the form $p \rightarrow q$, with:
$p: a b$ is odd or $a+b$ is odd
$q: a$ is odd or b is odd
where a and b are integers.
We use an indirect proof (proof by contrapositive).
Hypothesis: $\neg q: a$ is even and b is even.
There exist two integers k and l such that $a=2 k$ and $b=2 l$. Then
$a b=2 k \times 2 l=4 k l=2(2 k l)$ therefore there exists an integer $m(=2 k l)$ such that $a b=2 m: a b$ is even.
and
$a+b=2 k+2 l=2(k+l)$ therefore there exists an integer $n(=k+l)$ such that $a+b=2 n: a+b$ is even.
We have proved that $a b$ is even and $a+b$ is even; $\neg p$ is true. Therefore $\neg q \rightarrow \neg p$ is true, and by contrapositive, $p \rightarrow q$ is true.

Exercise 4

Let a and b be two integers. Show that if $a^{2}\left(b^{2}-2 b\right)$ is odd, then a is odd and b is odd.
This is an implication of the form $p \rightarrow q$, with:
$p: a^{2}\left(b^{2}-2 b\right)$ is odd
$q: a$ is odd and b is odd
where a and b are integers.
We use an indirect proof (proof by contrapositive).
Hypothesis: $\neg q: a$ is even or b is even. We look at both cases:

Case 1: a is even.
There exits an integer k such that $a=2 k$. Then $a^{2}\left(b^{2}-2 b\right)=4 k^{2}\left(b^{2}-2 b\right)=2\left[2 k^{2}\left(b^{2}-2 b\right)\right]$. Since $2 k^{2}\left(b^{2}-2 b\right)$ is an integer, we conclude that $a^{2}\left(b^{2}-2 b\right)$ is even.

Case 2: b is even.
There exits an integer l such that $b=2 l$. Then $a^{2}\left(b^{2}-2 b\right)=a^{2}\left(4 l^{2}-4 l\right)=2\left[a^{2}\left(2 l^{2}-2 l\right)\right]$. Since $a^{2}\left(2 l^{2}-2 l\right)$ is an integer, we conclude that $a^{2}\left(b^{2}-2 b\right)$ is even.

In both cases we have shown that $a^{2}\left(b^{2}-2 b\right)$ is even, i.e. that $\not p$ is true. Therefore $\neg q \rightarrow \neg p$ is true, and by contrapositive, $p \rightarrow q$ is true.

