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Induction
Exercise 1
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Let P(n) be the predicate:

P(n) : Z(_l)iiQ _ (_1)nn(n + 1)

We want to show that P(n) is true for all natural numbers.
n

Let us define: LHS(n) = z:(—l)ii2 and RHS(n) = % P(n) is then LHS(n) =
i=1

RHS(n). To prove that P(n) is true for all n > 1, we use a proof by induction.

e Basis step:

(—1)><1><2:

LHS(1)=(-1)x12=1 RHS(1) = 5

1

Therefore P(1) is true.

e Induction step: We suppose that P(n) is true, with 1 < n. We want to show that P(n + 1)
is true.
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Therefore LHS(n + 1) = RHS(n + 1), which validates that P(n + 1) is true.

RHS(n+1) =

The principle of proof by mathematical induction allows us to conclude that P(n) is true for all
n > 0.

Exercise 2

Show that

Let us define LHS(n) = 2" and RHS(n) = n!. Let P(n) be the proposition: LHS(n) <
RHS(n). We want to show that P(n) is true for all n > 4.

e Basis step: We show that P(4) is true:

LHS(4) = 2" =16
RHS(4) =41 =24

Therefore LHS(4) < RHS(4) and P(4) is true.

e Inductive step: Let n be a positive integer greater or equal to 4 (n > 4), and let us suppose
that P(n) is true. We want to show that P(n + 1) is true.

LHS(n+1) = 2" = 2LHS(n)



Since P(n) is true, we find:

LHS(n+1) <2n!

Sincen >4,2<n+1.
Therefore

LHS(n+1)
LHS(n+1)

(n+1) xn!

<
< (n+1)!

Since RHS(n+1) = (n+1)!, we get LHS(n+1) < RHS(n+1) which validates that P(n+1)

is true.

The principle of proof by mathematical induction allows us to conclude that P(n) is true for all
n > 4.

Exercise 3

Show that

n

1 n
Vn > 1 -
"= ’;i(ml) n+1

n

Let define: LHS = —_—
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LHS(n) = RHS(n). We want to show that P(n) is true for all n > 0. We use a proof by
induction.

and RHS(n) = ;5. Let P(n) be the proposition:

e Basis step:

Therefore LHS(1) = RHS(1), and P(1) is true.

e Induction step: We suppose that P(n) is true, with 1 < n. We want to show that P(n + 1)
is true.
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RHS(n+1) =

Therefore LHS(n + 1) = RHS(n + 1), which validates that P(n + 1) is true.

The principle of proof by mathematical induction allows us to conclude that P(n) is true for all n.



