Discussion 8: Solutions

ECS 17 (Winter 2024)
Patrice Koehl
koehl@cs.ucdavis.edu
February 27, 2024

Induction

Exercise 1

Show that

$$
\forall n \in \mathbb{N}, \sum_{i=1}^{n}(-1)^{i} i^{2}=\frac{(-1)^{n} n(n+1)}{2}
$$

Let $P(n)$ be the predicate:

$$
P(n): \quad \sum_{i=1}^{n}(-1)^{i} i^{2}=\frac{(-1)^{n} n(n+1)}{2}
$$

We want to show that $P(n)$ is true for all natural numbers.
Let us define: $\operatorname{LHS}(n)=\sum_{i=1}^{n}(-1)^{i} i^{2}$ and $R H S(n)=\frac{(-1)^{n} n(n+1)}{2} . P(n)$ is then $L H S(n)=$ $R H S(n)$. To prove that $P(n)$ is true for all $n \geq 1$, we use a proof by induction.

- Basis step:

$$
\operatorname{LHS}(1)=(-1) \times 1^{2}=1 \quad \quad R H S(1)=\frac{(-1) \times 1 \times 2}{2}=1
$$

Therefore $P(1)$ is true.

- Induction step: We suppose that $P(n)$ is true, with $1 \leq n$. We want to show that $P(n+1)$ is true.

$$
\begin{aligned}
\operatorname{LHS}(n+1) & =\sum_{i=1}^{n+1}(-1)^{i} i^{2} \\
& =\sum_{i=1}^{n}(-1)^{i} i^{2}+(-1)^{n+1}(n+1)^{2} \\
& =L H S(n)+(-1)^{n+1}(n+1)^{2} \\
& =\text { RHS }(n)+(-1)^{n+1}(n+1)^{2} \\
& =\frac{(-1)^{n} n(n+1)}{2}+(-1)^{n+1}(n+1)^{2} \\
& =\frac{(-1)^{n} n(n+1)+2(-1)^{n+1}(n+1)^{2}}{2} \\
& =\frac{(-1)^{n+1}(n+1)(2 n+2-n)}{2} \\
& =\frac{(-1)^{n+1}(n+1)(n+2)}{2}
\end{aligned}
$$

and

$$
R H S(n+1)=\frac{(-1)^{n+1}(n+1)(n+2)}{2}
$$

Therefore $\operatorname{LHS}(n+1)=R H S(n+1)$, which validates that $P(n+1)$ is true.

The principle of proof by mathematical induction allows us to conclude that $P(n)$ is true for all $n>0$.

Exercise 2

Show that

$$
\forall n \geq 4, \quad 2^{n} \leq n!
$$

Let us define $\operatorname{LHS}(n)=2^{n}$ and $R H S(n)=n!$. Let $P(n)$ be the proposition: LHS $(n) \leq$ $R H S(n)$. We want to show that $P(n)$ is true for all $n \geq 4$.

- Basis step: We show that $P(4)$ is true:

$$
\begin{aligned}
& \operatorname{LHS}(4)=2^{4}=16 \\
& \operatorname{RHS}(4)=4!=24
\end{aligned}
$$

Therefore $\operatorname{LHS}(4) \leq R H S(4)$ and $P(4)$ is true.

- Inductive step: Let n be a positive integer greater or equal to $4(n \geq 4)$, and let us suppose that $P(n)$ is true. We want to show that $P(n+1)$ is true.

$$
\operatorname{LHS}(n+1)=2^{n+1}=2 L H S(n)
$$

Since $P(n)$ is true, we find:

$$
L H S(n+1) \leq 2 n!
$$

Since $n \geq 4,2 \leq n+1$.
Therefore

$$
\begin{aligned}
L H S(n+1) & \leq(n+1) \times n! \\
L H S(n+1) & \leq(n+1)!
\end{aligned}
$$

Since $R H S(n+1)=(n+1)$!, we get $L H S(n+1)<R H S(n+1)$ which validates that $P(n+1)$ is true.

The principle of proof by mathematical induction allows us to conclude that $P(n)$ is true for all $n \geq 4$.

Exercise 3

Show that

$$
\forall n \geq 1, \sum_{i=1}^{n} \frac{1}{i(i+1)}=\frac{n}{n+1}
$$

Let us define: $L H S(n)=\sum_{i=1}^{n} \frac{1}{(i)(i+1)}$ and $R H S(n)=\frac{n}{n+1}$. Let $P(n)$ be the proposition: $L H S(n)=R H S(n)$. We want to show that $P(n)$ is true for all $n>0$. We use a proof by induction.

- Basis step:

$$
L H S(1)=\frac{1}{1 \times 2}=\frac{1}{2} \quad R H S(1)=\frac{1}{2}
$$

Therefore $L H S(1)=R H S(1)$, and $P(1)$ is true.

- Induction step: We suppose that $P(n)$ is true, with $1 \leq n$. We want to show that $P(n+1)$ is true.

$$
\begin{aligned}
\operatorname{LHS}(n+1) & =\sum_{i=1}^{n+1} \frac{1}{i(i+1)} \\
& =\sum_{i=1}^{n} \frac{1}{i(i+1)}+\frac{1}{(n+1)(n+2)} \\
& =\operatorname{LHS}(n)+\frac{1}{(n+1)(n+2)} \\
& =R H S(n)+\frac{1}{(n+1)(n+2)} \\
& =\frac{n}{n+1}+\frac{1}{(n+1)(n+2)} \\
& =\frac{n(n+2)+1}{(n+1)(n+2)} \\
& =\frac{n^{2}+2 n+1}{(n+1)(n+2)} \\
& =\frac{(n+1)^{2}}{(n+1)(n+2)} \\
& =\frac{n+1}{n+2}
\end{aligned}
$$

and

$$
R H S(n+1)=\frac{n+1}{n+2}
$$

Therefore $\operatorname{LHS}(n+1)=\operatorname{RHS}(n+1)$, which validates that $P(n+1)$ is true.

The principle of proof by mathematical induction allows us to conclude that $P(n)$ is true for all n.

