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Discussion 9: Induction

Exercise 1

Prove by induction that every number greater that 7 is the sum of a nonnegative integer multiple
of 8 and a nonnegative integer multiple of 5.
Let us rewrite this as:

P(n): For all n > 8, there exist two integers k£ > 0 and [ > 0 such that n = 3k + 5[. We prove
it by induction.

e basis step: Forn =8, wecanset k=1and [ =1: 8=3%1+5x1. P(8) is true.

e Inductive step. Let P(n) be true for an integer n > 8, i.e. there exist K > 0 and [ > 0 such
that n =3k 4+ 5= [. We want to decompose n + 1.
Notice that: n+1=3xk+5%l+1=3%(k+2)—6+5x(I—1)+5+1=3x(k+2)+5x(I—1).

k + 2 is nonnegative; however, [ — 1 may be negative if [ = 0. We study two cases:

— [ =0 then n = 3k, i.e. n is a multiple of 3. Since n is greater than 7, k > 3.
Notice that n +1 =3k +1 = 3(k —3) +2 5. Since k > 3, k — 3 > 0: we have found
two nonnegative integers m = k — 3 and p = 2 such that n +1 = 3m + 5p.

— [ >0then [ — 12> 0. Therefore we have found two nonnegative integers m = k + 2 and
n =1 — 1 such that n + 1 = 3m + 5p.

In all cases, P(n + 1) is true.
According to the principle of mathematical induction, we can conclude that for all n > 8, there
exist two integers £ > 0 and [ > 0 such that n = 3k + 5.
Exercise 2

Prove by induction that 2"t1 > n? + 1 for all n > 2.
Let us define LHS(n) = 2" and RHS(n) = n? + 1.



e Basis case: Let us prove that P(2) is true:
LHS(2)=23=38
RHS(2) =22+4+1=5.
Therefore LHS(2) > RHS(2). P(2) is true.

e Inductive step: Let us assume that P(n) is true. This means that LHS(n) > RHS(n).
We want to prove P(n +1) : LHS(n + 1) > RHS(n + 1) with LHS(n + 1) = 2""2 and
RHS(n+1)=(n+1)2+1.

LHS(n+1) = 2"+2

2 x 2ntl
2x LHS(n)
2 x RHS(n)
2(n? +1)

vV Vv

Let us rewrite:

n? +n? 42

n?>+2n+2+n%—2n
(n+1)2+1+n?-2n
= (n+1?+14n(n-2)

2(n? +1)

Since n > 2, n(n — 2) > 0, therefore 2(n? +1) > (n +1)2 + 1.
Replacing above, we get:

LHS(n+1) > (n+1)*+1
> RHS(n+1)

Therefore P(n + 1) is true.

According to the principle of mathematical induction, we can conclude that P(n) is true for all
n > 2.

Exercise 3

Show that 1 +34...2n —1=mn?2, for alln > 1.

Let us define LHS(n) =1+3+...2n—1
and RHS(n) = n?
Let p(n) : LHS(n) = RHS(n)
We want to show p(n) is true for all n > 1

a) Base Case n=1
LHS(1) =1
RHS(1)=12=1
Since LHS(1) = RHS(1), p(1) is true



b) Inductive Step
I want to show p(k)—p(k+1) whenever k>1
Hypothesis: p(k) is true and LHS(k)=RHS(k)

LHS(k+1) = 143+..2n—1+4+2n+1
LHS(k)+2n+1
RHS(k)+2n+1
n?+2n+1

= (n+1)?

= RHS(k+1)

Therefore LHS(k + 1) = RHS(k + 1), which validates that P(k + 1) is true.

The principle of proof by mathematical induction allows us to conclude that P(n) is true for all
n > 1.

Exercise 4

Show that Z for all integer n > 1.
k=

. n
14k2—1_2n+1

Let us define LHS(n) =Y 1_; 72—
and RHS(n) = 5.5
Let p(n) : LHS(n) = RHS(n)

We want to show p(n) is true for all n > 1

a) Base Case n=1
LHS(1) =12
RHS(1) = 2><%+1 N %
Since LHS(1) = RHS(1), p(1) is true

b) Inductive Step
I want to show p(k)—p(k+1) whenever k>1
Hypothesis: p(k) is true and LHS(k)=RHS(k)



k+1

1
=1

1

- LHS(k)+—4<k+1)2_1
k 1

%+ 1 (k1 1)(2k+3)
k(2k +3) + 1

2k + 1)(2k + 3)
2k% + 3k +1

2k + 1)(2k + 3)

2k +1)(k+1)

2k + 1)(2k + 3)

k+1

2k + 3

= RHS(k+1)

Therefore LHS(k + 1) = RHS(k + 1), which validates that P(k + 1) is true.

The principle of proof by mathematical induction allows us to conclude that P(n) is true for all
n > 1.

Exercise 5

Let f, be the n-th Fibonacci number. Show that fs, is even for allm > 1.
We note first that all Fibonacci numbers are integers. We use a proof by induction.

e Basis step: fs = fo+ fi =14 1 =2 which is even. The proposition is true for n = 1.

o Inductive step:. We suppose that fs3, is even for n > 1. Then:

J3n+3 = fant2 + fant1 = fant1 + fan + fant1 = 2 X fant1 + fan-
2 X f3n+1 is even and f3, is even by hypothesis; therefore f3(,1) is even.

According to the principle of mathematical induction, we can conclude that f3, is even for all
n > 1.

Exercise 6

Let f,, be the n-th Fibonacci number (note: Fibonacci numbers satisfy fo =0, f1 =1 and fr42 =
fnt1 + fn). Let m be a fized strictly positive integer. Prove by strong induction that for all n > 0,
fn+m = fmfnJrl + fmflfn-

We define LHS(n) = fo4m and RHS(n) = fifot1 + fm—1fn. Let p(n) be the proposition:
LHS(n) = RHS(n).

We want to show that p(n) is true for all n > 0.



a) Base Case n=0
LHS(0) = fm
RHS(O) = fmfl + fm—lf(] = fm
Therefore LHS(0) = RHS(0) and p(0) is true.

b) Inductive Step
I want to show [p(0) Ap(1) A... Ap(k)] = p(k + 1) whenever k > 1

We note first that:
LHS(k+1) = frt14m
RHS(k+1) = fifryo + fr—1fr1

From the definition of Fibonacci numbers,

LHS(k+1) = fet14m = ferm + fr—14m
Since p(k) is true, frim = fmSfr+1 + fm—1fk. Similarly, since p(k — 1) is true, fr_14m =
fmfre + fm—1fr—1. Replacing in the equation above, we get:

LHS(k+1) = foferr + fom-1fi + ffe + fi-1fr
= fm(fer1 + fi) + fm1 (& + fr—1)
= fumfrr2 + fm-1fk11
— RHS(k+1)

Therefore LHS(k + 1) = RHS(k + 1) which validates that p(k 4 1) is true.

The principle of proof by mathematical induction allows us to conclude that p(n) is true for all
n > 0.



