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Discussion 9: Induction

Exercise 1

Prove by induction that every number greater that 7 is the sum of a nonnegative integer multiple
of 3 and a nonnegative integer multiple of 5.

Let us rewrite this as:

P (n): For all n ≥ 8, there exist two integers k ≥ 0 and l ≥ 0 such that n = 3k + 5l. We prove
it by induction.

• basis step: For n = 8, we can set k = 1 and l = 1: 8 = 3 ∗ 1 + 5 ∗ 1. P (8) is true.

• Inductive step. Let P (n) be true for an integer n ≥ 8, i.e. there exist k ≥ 0 and l ≥ 0 such
that n = 3 ∗ k + 5 ∗ l. We want to decompose n+ 1.

Notice that: n+1 = 3∗k+5∗ l+1 = 3∗ (k+2)−6+5∗ (l−1)+5+1 = 3∗ (k+2)+5∗ (l−1).
k + 2 is nonnegative; however, l − 1 may be negative if l = 0. We study two cases:

– l = 0 then n = 3k, i.e. n is a multiple of 3. Since n is greater than 7, k ≥ 3.

Notice that n + 1 = 3k + 1 = 3(k − 3) + 2 ∗ 5. Since k ≥ 3, k − 3 ≥ 0: we have found
two nonnegative integers m = k − 3 and p = 2 such that n+ 1 = 3m+ 5p.

– l > 0 then l − 1 ≥ 0. Therefore we have found two nonnegative integers m = k + 2 and
n = l − 1 such that n+ 1 = 3m+ 5p.

In all cases, P (n+ 1) is true.

According to the principle of mathematical induction, we can conclude that for all n ≥ 8, there
exist two integers k ≥ 0 and l ≥ 0 such that n = 3k + 5l.

Exercise 2

Prove by induction that 2n+1 > n2 + 1 for all n ≥ 2.
Let us define LHS(n) = 2n+1 and RHS(n) = n2 + 1.
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• Basis case: Let us prove that P (2) is true:
LHS(2) = 23 = 8
RHS(2) = 22 + 1 = 5.
Therefore LHS(2) > RHS(2). P(2) is true.

• Inductive step: Let us assume that P (n) is true. This means that LHS(n) > RHS(n).
We want to prove P (n + 1) : LHS(n + 1) > RHS(n + 1) with LHS(n + 1) = 2n+2 and
RHS(n+ 1) = (n+ 1)2 + 1.

LHS(n+ 1) = 2n+2

= 2× 2n+1

= 2× LHS(n)

> 2×RHS(n)

> 2(n2 + 1)

Let us rewrite:

2(n2 + 1) = n2 + n2 + 2

= n2 + 2n+ 2 + n2 − 2n

= (n+ 1)2 + 1 + n2 − 2n

= (n+ 1)2 + 1 + n(n− 2)

Since n ≥ 2, n(n− 2) ≥ 0, therefore 2(n2 + 1) ≥ (n+ 1)2 + 1.
Replacing above, we get:

LHS(n+ 1) > (n+ 1)2 + 1

> RHS(n+ 1)

Therefore P (n+ 1) is true.

According to the principle of mathematical induction, we can conclude that P (n) is true for all
n ≥ 2.

Exercise 3

Show that 1 + 3 + . . . 2n− 1 = n2, for all n ≥ 1.

Let us define LHS(n) = 1 + 3 + . . . 2n− 1
and RHS(n) = n2

Let p(n) : LHS(n) = RHS(n)
We want to show p(n) is true for all n ≥ 1

a) Base Case n=1
LHS(1) = 1
RHS(1) = 12 = 1
Since LHS(1) = RHS(1), p(1) is true
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b) Inductive Step
I want to show p(k)→p(k+1) whenever k≥1
Hypothesis: p(k) is true and LHS(k)=RHS(k)

LHS(k + 1) = 1 + 3 + . . . 2n− 1 + 2n+ 1

= LHS(k) + 2n+ 1

= RHS(k) + 2n+ 1

= n2 + 2n+ 1

= (n+ 1)2

= RHS(k + 1)

Therefore LHS(k + 1) = RHS(k + 1), which validates that P (k + 1) is true.

The principle of proof by mathematical induction allows us to conclude that P (n) is true for all
n ≥ 1.

Exercise 4

Show that

n∑
k=1

1

4k2 − 1
=

n

2n+ 1
for all integer n ≥ 1.

Let us define LHS(n) =
∑n

k=1
1

4k2−1
and RHS(n) = n

2n+1
Let p(n) : LHS(n) = RHS(n)
We want to show p(n) is true for all n ≥ 1

a) Base Case n=1
LHS(1) = 1

3
RHS(1) = 1

2×1+1 = 1
3

Since LHS(1) = RHS(1), p(1) is true

b) Inductive Step
I want to show p(k)→p(k+1) whenever k≥1
Hypothesis: p(k) is true and LHS(k)=RHS(k)
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LHS(k + 1) =
k+1∑
i=1

1

4i2 − 1

= LHS(k) +
1

4(k + 1)2 − 1

=
k

2k + 1
+

1

(2k + 1)(2k + 3)

=
k(2k + 3) + 1

(2k + 1)(2k + 3)

=
2k2 + 3k + 1

(2k + 1)(2k + 3)

=
(2k + 1)(k + 1)

(2k + 1)(2k + 3)

=
k + 1

2k + 3
= RHS(k + 1)

Therefore LHS(k + 1) = RHS(k + 1), which validates that P (k + 1) is true.

The principle of proof by mathematical induction allows us to conclude that P (n) is true for all
n ≥ 1.

Exercise 5

Let fn be the n-th Fibonacci number. Show that f3n is even for all n ≥ 1.
We note first that all Fibonacci numbers are integers. We use a proof by induction.

• Basis step: f3 = f2 + f1 = 1 + 1 = 2 which is even. The proposition is true for n = 1.

• Inductive step:. We suppose that f3n is even for n ≥ 1. Then:
f3n+3 = f3n+2 + f3n+1 = f3n+1 + f3n + f3n+1 = 2× f3n+1 + f3n.
2× f3n+1 is even and f3n is even by hypothesis; therefore f3(n+1) is even.

According to the principle of mathematical induction, we can conclude that f3n is even for all
n ≥ 1.

Exercise 6

Let fn be the n-th Fibonacci number (note: Fibonacci numbers satisfy f0 = 0, f1 = 1 and fn+2 =
fn+1 + fn). Let m be a fixed strictly positive integer. Prove by strong induction that for all n ≥ 0,
fn+m = fmfn+1 + fm−1fn.

We define LHS(n) = fn+m and RHS(n) = fmfn+1 + fm−1fn. Let p(n) be the proposition:
LHS(n) = RHS(n).

We want to show that p(n) is true for all n ≥ 0.
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a) Base Case n=0
LHS(0) = fm
RHS(0) = fmf1 + fm−1f0 = fm
Therefore LHS(0) = RHS(0) and p(0) is true.

b) Inductive Step
I want to show [p(0) ∧ p(1) ∧ . . . ∧ p(k)] → p(k + 1) whenever k ≥ 1

We note first that:
LHS(k + 1) = fk+1+m

RHS(k + 1) = fmfk+2 + fm−1fk+1

From the definition of Fibonacci numbers,
LHS(k + 1) = fk+1+m = fk+m + fk−1+m

Since p(k) is true, fk+m = fmfk+1 + fm−1fk. Similarly, since p(k − 1) is true, fk−1+m =
fmfk + fm−1fk−1. Replacing in the equation above, we get:

LHS(k + 1) = fmfk+1 + fm−1fk + fmfk + fm−1fk−1

= fm(fk+1 + fk) + fm−1(fk + fk−1)

= fmfk+2 + fm−1fk+1

= RHS(k + 1)

Therefore LHS(k + 1) = RHS(k + 1) which validates that p(k + 1) is true.

The principle of proof by mathematical induction allows us to conclude that p(n) is true for all
n ≥ 0.
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