Data, Logic, and Computing

ECS 17 (Winter 2024)

Patrice Koehl
koehl@cs.ucdavis.edu
February 25, 2024

Midterm 2: solutions

Part I: logic (2 questions, each 10 points; total 20 points)
Using truth tables, establish for each of the two propositions below if it is a tautology, a contradiction or neither.

1) $(p \leftrightarrow q) \leftrightarrow(\neg p \leftrightarrow \neg q)$

| p | q | $p \leftrightarrow q$ | $\neg p \quad \neg q \quad \neg p \leftrightarrow \neg q \quad(p \leftrightarrow q) \leftrightarrow(\neg p \leftrightarrow \neg q)$ |
| :---: | :---: | :---: | :---: | :---: | :---: |

T	T	T	F	F	T	T
T	F	F	F	T	F	T
F	T	F	T	F	F	T
F	F	T	T	T	T	T

The proposition is a tautology.
2) $(p \rightarrow(q \wedge r)) \vee((p \wedge q) \rightarrow r)$

p	q	r	$q \wedge r$	$p \rightarrow(q \wedge r)$	$p \wedge q$	$(p \wedge q) \rightarrow r \quad(p \rightarrow(q \wedge r)) \vee((p \wedge q) \rightarrow r)$

T	T	T	T	T	T	T	T
T	T	F	F	F	T	F	F
T	F	T	F	F	F	T	T
T	F	F	F	F	F	T	T
F	T	T	T	T	F	T	T
F	T	F	F	T	F	T	T
F	F	T	F	T	F	T	T
F	F	F	F	T	F	T	T

The proposition is not a tautology.

Part II: proofs (5 questions, each 10 points; total 50 points)

1) Prove that if $7 n^{2}+4$ is even, then n is even, where n is a natural number.

We want to prove an implication of the form $p \rightarrow q$ is true, with:

$$
\begin{array}{cc}
p: 7 n^{2}+4 \text { is even } & \neg p: 7 n^{2}+4 \text { is odd } \\
q: n \text { is even } & \neg q: n \text { is odd }
\end{array}
$$

We use an indirect proof:
We assume that $\neg q$ is true, i.e. that n is odd. There exists an integer k such that $n=2 k+1$. Then,

$$
\begin{aligned}
7 n^{2}+4 & =7(2 k+1)^{2}+4 \\
& =7\left(4 k^{2}+4 k+1\right)+4 \\
& =28 k^{2}+28 k+13 \\
& =2\left(14 k^{2}+14 k+6\right)+1
\end{aligned}
$$

As $14 k^{2}+14 k+6$ is an integer, $7 n^{2}+4$ is odd, and therefore $\neg p$ is true.
We have shown that $\neg q \rightarrow \neg p$ is true, therefore $p \rightarrow q$ is true.
2) 2) Let a, b, and c be consecutive integers with $a<b<c$. Show that if $a \neq-1$ and $a \neq 3$, then $a^{2}+b^{2} \neq c^{2}$.

We want to prove an implication of the form $p \rightarrow q$ is true, with:

$$
\begin{array}{cc}
p: a \neq-1 \text { and } a \neq 3 & \neg p: a=-1 \text { or } a=3 \\
q: a^{2}+b^{2} \neq c^{2} & \neg q: a^{2}+b^{2}=c^{2}
\end{array}
$$

Clearly, it is easier to use an indirect proof.
We assume that $\neg q$ is true, i.e. that $a^{2}+b^{2}=c^{2}$. Recall that a, b, and c are consecutive integers with $a<b<c$. Then:

$$
\begin{aligned}
b & =a+1 \\
c & =b+1=a+2
\end{aligned}
$$

Therefore, the equation $a^{2}+b^{2}=c^{2}$ becomes:

$$
\begin{aligned}
a^{2}+b^{2} & =c^{2} \\
a^{2}+(a+1)^{2} & =(a+2)^{2} \\
a^{2}+a^{2}+2 a+1 & =a^{2}+4 a+4 \\
a^{2}-2 a-3 & =0 \\
(a+1)(a-3) & =0
\end{aligned}
$$

whose solutions are $a=-1$ or $a=3$, i.e. that $\neg p$ is true.
We have shown that $\neg q \rightarrow \neg p$ is true, therefore $p \rightarrow q$ is true.
3) Let a and b be two positive real numbers. Use a proof by contradiction to show that if $\frac{a}{b+1}=$ $\frac{b}{a+1}$, then $a=b$.

We want to prove an implication of the form $p \rightarrow q$ is true, with:

$$
\begin{aligned}
p: \frac{a}{b+1} & =\frac{b}{a+1} & \neg p: \frac{a}{b+1} \neq \frac{b}{a+1} \\
q: a & =b & \neg q: a \neq b
\end{aligned}
$$

We use a proof by contradiction:
We assume that p is true, and q is false. Since p is true,

$$
\begin{aligned}
\frac{a}{b+1} & =\frac{b}{a+1} \\
a(a+1) & =b(b+1) \\
a^{2}-b^{2}+(a-b) & =0 \\
(a-b)(a+b+1) & =0
\end{aligned}
$$

As q is false, $a \neq b$ and therefore $a-b \neq 0$. Therefore,

$$
a+b=-1
$$

However, a and b are both positive: we have reached a contradiction. Therefore $p \rightarrow q$ is true.
4) Prove that $n^{2}+n+9$ is odd for all integer n

Let n be an integer. We know that $n(n+1)=n^{2}+n$ is an even number. Therefore, there exists an integer k such that:

$$
n^{2}+n=2 k
$$

Therefore,

$$
n^{2}+n+9=2 k+9=2(k+4)+1
$$

Since $\mathrm{k}+4$ is an integer, we have that $n^{2}+n+9$ is odd.
5) Let a and b be two integers. Use a direct proof to show that if $a^{2}+4 b^{2}-4 a b$ is even, then $a+2 b$ is even.

We want to prove an implication of the form $p \rightarrow q$ is true, with:

$$
\begin{array}{cc}
p: a^{2}+4 b^{2}-4 a b \text { is even } & \neg p: a^{2}+b^{2}-4 a b \text { is odd } \\
q: a+2 b \text { is even } & \neg q: a+2 b \text { is odd }
\end{array}
$$

We use a direct proof:
We suppose that p is true: there exists an integer k such that $a^{2}+4 b^{2}-4 a b=2 k$. Note that

$$
\begin{aligned}
(a+2 b)^{2} & =a^{2}+4 b^{2}+4 a b \\
& =2 k+4 a b+4 a b \\
& =2(k+4 a b)
\end{aligned}
$$

Since $k+2 a b$ is an integer, $(a+2 b)^{2}$ is even. Therefore $a+2 b$ is even (using the "Prayer"), i.e. q is true.

We have therefore shown that $p \rightarrow q$ is true.

