Review session

ECS 17 (Winter 2024)

Patrice Koehl
koehl@cs.ucdavis.edu
March , 142024

1 Simple propositions

For each proposition on the left, indicate if it is a tautology or not:
Table 1: Propositional logic

Proposition	Tautology (Yes/ No)
$(\neg(p \wedge q)) \leftrightarrow(\neg p \vee \neg q)$	
$(\neg(p \wedge q)) \leftrightarrow(\neg p \wedge \neg q)$	
$(\neg(p \vee q)) \leftrightarrow(\neg p \wedge \neg q)$	
if $6^{2}=36$ then $2=3$	
if $6^{2}=-1$ then $36=-1$	

2 Knights and Knaves

A very special island is inhabited only by Knights and Knaves. Knights always tell the truth, while Knaves always lie. You meet three inhabitants: Alex, John and Sally. Alex says, "If John is a Knight then Sally is a Knight". John says, "Alex is a Knight and Sally is a Knave". Can you find what Alex, John, and Sally are? Explain your answer.

3 Proofs: direct, indirect, and contradictions

3.1 Different methods of proofs

Let n be an integer. Show that if $3 n^{2}+2 n+9$ is odd, then n is even using a direct, indirect, and proof by contradiction.

3.2 Proof by contradiction

Let n be a strictly positive integer. Show that $\frac{2 n+1}{2 n+4}$ is not an integer

3.3 Proof by contradiction

Let n be a strictly positive integer. Show that if $\sqrt{n^{2}+1}$ is not an integer.

4 Proofs by induction

4.1 Identity

a) Show that $1+3+\ldots 2 n-1=n^{2}$, for all $n \geq 1$.
b) Show that $\sum_{k=1}^{n} \frac{1}{4 k^{2}-1}=\frac{n}{2 n+1}$ for all integer $n \geq 1$.

4.2 Multiples

For the next two problems, we say that an integer n is a multiple of an integer m if and only if there exist an integer k such that $n=k m$.
a) Show that $\left(7^{n}-2^{n}\right)$ is a multiple of 5 for all integer $n \geq 1$.
b) Show that $n(2 n+1)(7 n+1)$ is a multiple of 6 or all integer $n \geq 1$.

4.3 Stamps: 1

Use induction to prove that any postage of n cents (with $n \geq 30$) can be formed using only 6 -cent and 7 -cent stamps.

4.4 Stamps: 2

Use induction to prove that any postage of n cents (with $n \geq 18$) can be formed using only 3 -cent and 10 -cent stamps.

4.5 Other

Prove by induction that for all $n \geq 1$, there exist two strictly positive integers a_{n} and b_{n} such that $(1+\sqrt{2})^{n}=a_{n}+b_{n} \sqrt{2}$.

4.6 Fibonacci

Let f_{n} be the Fibonacci numbers. show that $f_{n-1} f_{n+1}-f_{n}^{2}=(-1)^{n}$, for all $n>1$.

