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1 Simple propositions

For each proposition on the left, indicate if it is a tautology or not:

Table 1: Propositional logic

Proposition Tautology (Yes/ No)

(¬(p ∧ q)) ↔ (¬p ∨ ¬q) Yes: this is one of DeMorgan’s laws

(¬(p ∧ q)) ↔ (¬p ∧ ¬q) No! contradicts DeMorgan’s law

(¬(p ∨ q)) ↔ (¬p ∧ ¬q) Yes: this is the second DeMorgan’s law

if 62 = 36 then 2 = 3
No: p is true and q is false: therefore

p → q is false

if 62 = −1 then 36 = −1
Yes: p is false and therefore p → q is

always true.

2 Knights and Knaves

A very special island is inhabited only by Knights and Knaves. Knights always tell the truth,
while Knaves always lie. You meet three inhabitants: Alex, John and Sally. Alex says, “If John is
a Knight then Sally is a Knight”. John says, “Alex is a Knight and Sally is a Knave”. Can you
find what Alex, John, and Sally are? Explain your answer.
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Let us build the table for the possible options for Alex, John, and Sally. We then check the
validity of the two statements, and finally check the consistency of the truth values for those
statements with the nature of Alex and John.

Line Alex John Sally Alex says John says Compatibility

1 Knight Knight Knight T F No: John would be a Knight who lies
2 Knight Knight Knave F T No: Alex would be a Knight who lies
3 Knight Knave Knight T F Yes
4 Knight Knave Knave T T No, John would be a Knave who tells the truth
5 Knave Knight Knight T F No, Alex would be a Knave who tells the truth
6 Knave Knight Knave F F No, John would be a Knight who lies
7 Knave Knave Knight T F No, Alex would be a Knave who tells the truth
8 Knave Knave Knave T F No, Alex would be a Knave who tells the truth

Therefore Alex and Sally are Knights and John is a Knave.

3 Proofs: direct, indirect, and contradictions

3.1 Different methods of proofs

Let n be an integer. Show that if 3n2 + 2n+ 9 is odd, then n is even using a direct, indirect, and
proof by contradiction.

This is a problem of showing a conditional p → q is true, where
p : 3n2 + 2n+ 9 is odd
q : n is even

We will use three different types of proof: direct, indirect, and proof by contradiction

a) Direct proof: we show directly that p → q is true.

Hypothesis: p is true, 3n2 + 2n + 9 is odd. Therefore there exists an integer k such that
3n2 + 2n + 9 = 2k + 1, i.e. 3n2 = 2k − 2n − 8. Noticing that 3n2 = n2 + 2n2, we get:
n2 = 2k − 2n− 8− 2n2 = 2(k − n− 4− n2). Since both n and k are integers, k − n− 4− n2

is an integer, which we call l. Then n2 = 2l, i.e. n2 is even. We have seen in class that for
all integers n, n2 is even if and only if n is even. We can conclude that n is even: q is true.
Therefore p → q is true.

b) Indirect proof: Instead of showing directly that p → q is true, we show that ¬q → ¬p is true

Hypothesis: ¬q is true, n is odd.

Since n is odd, there exists an integer k such that n = 2k + 1. Therefore, 3n2 + 2n + 9 =
3(2k + 1)2 + 2(2k + 1) + 9 = 12k2 + 16k + 14 = 2(6k2 + 8k + 7)

Since 6k2 +8k+7 is integer, 3n2 +2n+9 is even, i.e. ¬p is true. Therefore ¬q → ¬p is true,
and p → q is true.
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c) Proof by contradiction: we suppose p → q is false

Hypothesis: p → q is false, i.e. p is true and ¬q is true, namely 3n2 + 2n+ 9 is odd and n is
odd.

Since n is odd, there exists an integer k such that n = 2k + 1. Therefore, 3n2 + 2n + 9 =
3(2k + 1)2 + 2(2k + 1) + 9 = 12k2 + 16k + 14 = 2(6k2 + 8k + 7)

Since 6k2+8k+7 is integer, 3n2+2n+9 is even. But we have supposed that 3n2+2n+9 is
odd. We have reached a contradiction. Therefore the hypothesis we made is false, therefore
p → q is true.

3.2 Proof by contradiction

Let n be a strictly positive integer. Show that 2n+1
2n+4 is not an integer

We use a proof by contradiction: We suppose that there exists an integer n such that 2n+1
2n+4 is an

integer. Let us write the integer 2n+1
2n+4 as k. Then we have:

2n+ 1 = k(2n+ 4) = 2k(n+ 2)
This would mean however that an odd number, 2n+1, is equal to an even number, 2k(n+2). This
is a contradiction. Therefore the hypothesis is wrong and the initial property, namely 2n+1

2n+4 is not
an integer, is true.

3.3 Proof by contradiction

Let n be a strictly positive integer. Show that if
√
n2 + 1 is not an integer.

We use a proof by contradiction: We make the hypothesis that
√
n2 + 1 is an integer. Let us write

this integer as k. Then we have:

√
n2 + 1 = k

n2 + 1 = k2

k2 − n2 = 1

(k − n)(k + n) = 1

Since k and n are supposed to be integers, there are only two possibilities:

a) k − n = 1 and k + n = 1, in which case k = 1 and n = 0.

b) k − n = −1 and k + n = −1, in which case k = −1 and n = 0.

In both cases, we have n = 0. However, n is set to be strictly positive. We have reached a
contradiction, and therefore

√
n2 + 1 is not an integer.

4 Proofs by induction
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4.1 Identity

a) Show that 1 + 3 + . . . 2n− 1 = n2, for all n ≥ 1.

Let us define LHS(n) = 1 + 3 + . . . 2n− 1
and RHS(n) = n2

Let p(n) : LHS(n) = RHS(n)
We want to show p(n) is true for all n ≥ 1

a) Basis step: we want to show that p(1) is true
LHS(1) = 1
RHS(1) = 12 = 1
Since LHS(1) = RHS(1), p(1) is true

b) Inductive Step
I want to show p(n)→p(n+1) whenever n≥1
Hypothesis: p(n) is true and LHS(n)=RHS(n)

LHS(n+ 1) = 1 + 3 + . . . 2n− 1 + 2n+ 1

= LHS(n) + 2n+ 1

= RHS(n) + 2n+ 1

= n2 + 2n+ 1

= (n+ 1)2

= RHS(n+ 1)

Therefore LHS(n+ 1) = RHS(n+ 1), which validates that P (n+ 1) is true.

The principle of proof by mathematical induction allows us to conclude that P (n) is true for
all n ≥ 1.

b) Show that
n∑

k=1

1

4k2 − 1
=

n

2n+ 1
for all integer n ≥ 1.

Let us define LHS(n) =
∑n

k=1
1

4k2−1
and RHS(n) = n

2n+1
Let p(n) : LHS(n) = RHS(n)
We want to show p(n) is true for all n ≥ 1

a) Basis step: we want to show that p(1) is true
LHS(1) = 1

3
RHS(1) = 1

2×1+1 = 1
3

Since LHS(1) = RHS(1), p(1) is true
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b) Inductive Step
I want to show p(n)→p(n+1) whenever n≥1
Hypothesis: p(k) is true and LHS(k)=RHS(k)

LHS(n+ 1) =
n+1∑
i=1

1

4i2 − 1

= LHS(n) +
1

4(n+ 1)2 − 1

= RHS(n) +
1

4(n+ 1)2 − 1

=
n

2n+ 1
+

1

(2n+ 1)(2n+ 3)

=
n(2n+ 3) + 1

(2n+ 1)(2n+ 3)

=
2n2 + 3n+ 1

(2n+ 1)(2n+ 3)

=
(2n+ 1)(n+ 1)

(2n+ 1)(2n+ 3)

=
n+ 1

2n+ 3
= RHS(n+ 1)

Therefore LHS(n+ 1) = RHS(n+ 1), which validates that P (n+ 1) is true.

The principle of proof by mathematical induction allows us to conclude that P (n) is true for
all n ≥ 1.

4.2 Multiples

For the next two problems, we say that an integer n is a multiple of an integer m if and only if
there exist an integer k such that n = km.

a) Show that (7n − 2n) is a multiple of 5 for all integer n ≥ 1.

Let us define LHS(n) = 7n − 2n

Let p(n) : LHS(n) is a multiple of 5.
We want to show p(n) is true for all n ≥ 1

a) Basis step: we want to show that p(1) is true
LHS(1) = 7− 2 = 5
Since LHS(1) = 5× 1, and 1 is an integer, p(1) is true

5



b) Inductive Step
I want to show p(n)→p(n+1) whenever n≥1
p(n) is true means there exists an integer m such that LHS(n) = 7n − 2n = 5m.
Note that:

LHS(n+ 1) = 7n+1 − 2n+1

= 7× 7n − 2× 2n

= 7× (5m+ 2n)− 2× 2n

= 5(7m) + 5× 2n

= 5(7m+ 2n)

Since 7m+2n is an integer, LHS(n+1) is a multiple of 5, which validates that P (n+1)
is true.

The principle of proof by mathematical induction allows us to conclude that P (n) is true for
all n ≥ 1.

b) Show that [n(2n+ 1)(7n+ 1)] is a multiple of 6 for all integer n ≥ 1.

Let us define LHS(n) = n(2n+ 1)(7n+ 1)
Let p(n) : LHS(n) is a multiple of 6
We want to show p(n) is true for all n ≥ 1

a) Basis step: n=1
LHS(1) = 1× (3)× (8) = 24 = 6× 4
Since 4 is an integer, LHS(1) is a multiple of 6: p(1) is true

b) Inductive Step
I want to show p(n)→p(n+1) whenever n≥1
p(n) is true means there exists an integerm such that LHS(n) = n(2n+1)(7n+1) = 6m.
Note that:

LHS(n+ 1) = (n+ 1)(2n+ 3)(7n+ 8)

= (2n2 + 5n+ 3)(7n+ 8)

= 14n3 + 51n2 + 61n+ 24

Note also that

LHS(n) = (2n2 + n)(7n+ 1)

= 14n3 + 9n2 + n

Therefore:

LHS(n+ 1) = LHS(n) + 42n2 + 60n+ 24

= 6m+ 6(7n2 + 10n+ 4)

= 6(m+ 7n2 + 10n+ 4)
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As m+ 7n2 + 10n+ 4 is an integer (because both m and n are integers), LHS(n+ 1) is
a multiple of 6, which validates that P (n+ 1) is true.

The principle of proof by mathematical induction allows us to conclude that P (n) is true for
all n ≥ 1.

4.3 Stamps: 1

Use induction to prove that any postage of n cents (with n ≥ 30) can be formed using only 6–cent
and 7–cent stamps.

Let p(n) be the proposition that n cents can be made with only 6–cent and 7–cent stamps,
when n is greater than or equal to 30.
Therefore there exists two positive integers an and bn such that n = 6an + 7bn

a) Basis step: I want to prove that p(30) is true
30 can be composed of 5 times 6 plus 0 times 7: 30 = 6× 5 + 7× 0
We can set a30 = 5 and b30 = 0. Both are positive integers. Therefore p(30) is true

b) Inductive Step
I want to show p(n) → p(n+ 1) whenever n ≥ 30
Hypothesis: p(n) is true and there exists two positive integers an and bn such that n =
6an + 7bn
Then:
n+ 1 = 6an + 7bn + 1
Since 1 can be written as 7− 6 we can write
n+ 1 = 6an + 7bn + 7− 6 = 6(an − 1) + 7(bn + 1)
Since bn is greater than or equal to 0, then (bn + 1) is also greater than 0
(an − 1) is only positive if an is greater or equal to 1.
There are therefore two situations that we need to consider: an ≥ 1 and an = 0.

i) an ≥1
Then n+ 1 can be written as:
n+ 1 = 6(an − 1) + 7(bn + 1) where both (an − 1) and (bn + 1) are positive.
We can set an+1 = an − 1 and bn+1 = bn + 1. In this case, p(n+ 1) is true.

ii) an = 0
n+ 1 = 7bn + 1
n+ 1 = 7bn + 36− 35
n+ 1 = 6× 6 + 7(bn − 5)
n+ 1 can be written as 6 times a positive integer 6 and 7 times (bn − 5).
Notice that n = 7bn. Since n > 29, 7bn > 29. Since bn is an integer, we conclude that
bn ≥ 5. Therefore (bn − 5) ≥ 0.
We can set an+1 = 6 and bn+1 = bn − 5. In this case, p(n+ 1) is true
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In all cases, we have proven that p(n+ 1) is true: the inductive step is true.

The principle of proof by mathematical induction allows us to conclude that p(n) is true for all
n > 29.

4.4 Stamps: 2

Use induction to prove that any postage of n cents (with n ≥ 18) can be formed using only 3–cent
and 10–cent stamps.

Let p(n) be the proposition that n cents can be made with only 3-cent and 10-cent stamps,
when n is greater than 18.
Therefore there exists two positive integers an and bn such that n = 3an + 10bn

a) Basis step: I want to prove that p(18) is true
18 can be composed of 3 times 6 plus 0 times 10: 18 = 3× 6 + 10× 0
We can set a18 = 6 and b18 = 0. Both are positive integers. Therefore p(18) is true

b) Inductive Step
I want to show p(n) → p(n+ 1) whenever n ≥ 18
Hypothesis: p(n) is true and there exists two positive integers an and bn such that n =
3an + 10bn
Then:
n+ 1 = 3an + 10bn + 1
Since 1 can be written as 10− 9 = 10− 3× 3 we can write
n+ 1 = 3an + 10bn + 10− 3× 3 = 3(an − 3) + 10(bn + 1)
Since bn is greater than or equal to 0, then (bn + 1) is also greater than 0
(an − 3) is only positive if an is greater or equal to 3.
There are therefore four situations that we need to consider: an ≥ 3, an = 2, an = 1, and
an = 0.

i) an ≥3
Then n+ 1 can be written as:
n+ 1 = 3(an − 3) + 10(bn + 1) where both (an − 3) and (bn + 1) are positive.
We can set an+1 = an − 3 and bn+1 = bn + 1. In this case, p(n+ 1) is true.

ii) an = 2
n+ 1 = 10bn + 7
n+ 1 = 10bn + 27− 20
n+ 1 = 10(bn − 2) + 3× 9
n+ 1 can be written as 3 times a positive integer 9 and 10 times (bn − 2).
Notice that n = 10bn + 6. Since n > 17, 10bn + 6 > 17, and therefore 10bn > 11. Since
bn is an integer, we conclude that bn ≥ 2. Therefore (bn − 2) ≥ 0.
We can set an+1 = 9 and bn+1 = bn − 2. In this case, p(n+ 1) is true
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iii) an = 1
n+ 1 = 10bn + 4
Since 4 = 24− 20 = 3× 8− 2× 10 we can write
n+ 1 = 10(bn − 2) + 3× 8
n+ 1 can be written as 3 times a positive integer 8 and 10 times (bn − 2).
Notice that n = 10bn + 3. Since n > 17, 10bn > 14. Since bn is an integer, we conclude
that bn ≥ 2 and therefore bn − 2 ≥ 0.
We can set an+1 = 8 and bn+1 = bn − 2. In this case, p(n+ 1) is true

iv) an = 0
n+ 1 = 10bn + 1
Since 1 = 21− 20 = 3× 7− 2× 10 we can write
n+ 1 = 10(bn − 2) + 3× 7
n+ 1 can be written as 3 times a positive integer 7 and 10 times (b− 2).
Notice that k = 10bn. Since n > 17, 10bn > 17. Since bn is an integer, we conclude that
bn ≥ 2 and therefore bn − 2 ≥ 0.
We can set an+1 = 7 and bn+1 = bn − 2. In this case, p(n+ 1) is true

In all cases, we have proven that p(n+ 1) is true: the inductive step is true.

The principle of proof by mathematical induction allows us to conclude that p(n) is true for all
n > 17.

4.5 Other

Prove by induction that for all n ≥ 1, there exist two strictly positive integers an and bn such that
(1 +

√
2)n = an + bn

√
2.

Let p(n) be the proposition that there exist two strictly positive integers an and bn such that
(1 +

√
2)n = an + bn

√
2.

We want to show p(n) is true for all n ≥ 1

a) Basis step: we want to show p(1) is true.
Note that (1 +

√
2) = 1 + 1×

√
2. Setting a1 = 1 and b1 = 1, we have (1 +

√
2) = a1 + b1

√
2

Therefore p(1) is true

b) Inductive Step
I want to show p(n) → p(n+ 1) whenever n ≥ 1
Hypothesis: p(n) is true and there exists two positive integers ak and bk such that (1+

√
2)n =

an + bn
√
2

Then,

(1 +
√
2)n+1 = (1 +

√
2)n(1 +

√
2)

= (an + bn
√
2)(1 +

√
2)

= an + 2bn + (an + bn)
√
2
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Let us set an+1 = an + 2bn and bn+1 = an + bn. We note first that an+1 and bn+1 are strictly
positive integers. Second, we have:

(1 +
√
2)n+1 = an+1 + bn+1

√
2

Therefore P (n+ 1) is true.

The principle of proof by mathematical induction allows us to conclude that P (n) is true for all
n ≥ 1.

4.6 Fibonacci

Let fn be the Fibonacci numbers. show that fn−1fn+1 − f2
n = (−1)n, for all n > 1.

Let me define LHS(n) = fn−1fn+1 − f2
n

Let me define RHS(n) = (−1)n

Let P (n) : LHS(n) = RHS(n)
I want to show p(n) is true for all n > 1

a) Basis step: we want to show P (1) is true.
LHS(2) = f1f3 − f2

2 = (1)(2)− (1)2 = (2)− (1) = 1
RHS(2) = (−1)2 = 1
Since LHS(2) = RHS(2), p(2) is true

b) Inductive Step
I want to show p(n)i → p(n+ 1) whenever n > 1
Hypothesis: p(n) is true therefore LHS(n) = RHS(n)
LHS(n+ 1) = fnfn+2 − f2

n+1

LHS(n+ 1) = fn(fn + fn+1)− f2
n+1

LHS(n+ 1) = f2
n + fnfn+1 − f2

n+1

LHS(n+ 1) = f2
n + fn+1(fn − fn+1)

Since fn−1 + fn = fn+1 then fn − fn+1 = −fn−1

LHS(n+ 1) = f2
n + fn+1(−fn−1)

LHS(n+ 1) = f2
n − fn+1fn−1

LHS(n+ 1) = −LHS(n)
Since LHS(n) = RHS(n)
LHS(n+ 1) = −RHS(n) = (−1)n+1

RHS(n+ 1) = (−1)n+1

Therefore LHS(n+ 1) = RHS(n+ 1), which validates that P (n+ 1) is true.

The principle of proof by mathematical induction allows us to conclude that P(n) is true for all
n > 1.

10


