\qquad

ECS 17: Data, Logic, and Computing
 Midterm 1

February 2, 2022
Notes:

1) The midterm is open book, open notes.
2) You have 50 minutes, no more: I will strictly enforce this.
3) The midterm is graded over 70 points
4) You can answer directly on these sheets (preferred), or on loose paper.
5) Please write your name at the top right of each page you turn in!
6) Please, check your work! Also, do show your work

Part I (6 questions, each 5 points; total 30 points)
(These questions are multiple choices; in each case, find the most plausible answer)

1) How much space would you need to store a 5 min song that has been sampled at 44.1 kHz , with each data point stored on 24 bits, in mono (i.e. with a single microphone)? Assume no compression.
a. About 40 Gbytes
b. About 40 Mbytes
c. About 53 Mbytes
d. About 400 Kbytes
2) Let X be the number with the hexadecimal representation $A A$ and Y the number whose hexadecimal representation is 9D; which of these numbers \boldsymbol{T} (in hexadecimal form) satisfies $X-T=Y$?
a. A
b. B
c. C
d. D
3) Which of these bytes represents the letter P (uppercase) based on the ASCII code?
a. 01010000
b. 10100000
c. 01010010
d. 10100010
4) The heart rate of a young athlete can go as high as 180 beats per minute. What is the most appropriate sampling rate to use if you want to monitor heart rate during exercise?
a. 1 Hz ,
b. 8 Hz ,
c. 5 Hz ,
d. 3 Hz .

Name: \qquad
ID: \qquad
5) Multiplying two numbers on a computer requires 20 cycles of computing time. How long would it take to perform a calculation that involves 5 million multiplications on a 2GHz processor?
a. 0.5 s
b. 0.05 s
c. 0.005 s
d. 0.0005 s
6) Which binary number comes right after the binary number 101111?
a. 101112
b. 111111
c. 101110
d. 110000

Part II (two problems, each 10 points; total 20 points)

1) Complete the logic table corresponding to the logic gate shown below. Convert it into a Boolean expression (10 points)

\mathbf{A}	\mathbf{B}	\mathbf{C}	\mathbf{D}	\mathbf{O}
1	1			
1	0			
0	1			
0	0			

\qquad $I D:$
2) You encounter a problem on an exam with only answer choices:
a) Option 1
b) Option 1 or Option 2
c) Option 2 or Option 3

You do not know what those options are, as the question has been omitted, but you know that only one answer ($\mathrm{a}, \mathrm{b}, \mathrm{or} \mathrm{c}$) is possible. Can you find that answer? Which of the 3 options was in fact correct? Explain your reasoning. (10 points)

Part III (two problems, each 10 points; total 20 points)

1) Let p and q be two propositions. The compound proposition p NAND q is false when both p and q are true, and true otherwise. It is denoted $p \uparrow q$. Show that $p \uparrow q \Leftrightarrow \neg(p \wedge q)$ (10 points)
2) Find a compound proposition logically equivalent to $p \vee q$ using only the logical operator \uparrow. Show your work (10 points)

Name: \qquad
ID: \qquad
Appendix A: ASCII table

Dec	Hex	Char									
0	00	Null	32	20	Space	64	40	[96	60	
1	01	Start of heading	33	21	!	65	41	A	97	61	a
2	02	Start of text	34	22	"	66	42	B	98	62	b
3	03	End of text	35	23	\#	67	43	C	99	63	c
4	04	End of transmit	36	24	\$	68	44	D	100	64	d
5	05	Enquiry	37	25	\%	69	45	E	101	65	e
6	06	Acknowledge	38	26	ε	70	46	F	102	66	\pm
7	07	Audible bell	39	27	1	71	47	G	103	67	g
8	08	Backspace	40	28	(72	48	H	104	68	h
9	09	Horizontal tab	41	29)	73	49	I	105	69	i
10	0 O	Line feed	42	2 A	*	74	4 A	J	106	6 A	j
11	OB	Vertical tab	43	2B	+	75	4 B	K	107	6 B	k
12	OC	Form feed	44	2 C	,	76	4 C	L	108	6 C	1
13	OD	Carriage return	45	2D	-	77	4 D	M	109	6 D	m
14	OE	Shift out	46	2 E	-	78	4 E	N	110	6 E	n
15	OF	Shift in	47	2 F	/	79	4 F	\bigcirc	111	6 F	\bigcirc
16	10	Data link escape	48	30	0	80	50	P	112	70	p
17	11	Device control 1	49	31	1	81	51	Q	113	71	q
18	12	Device control 2	50	32	2	82	52	R	114	72	r
19	13	Device control 3	51	33	3	83	53	5	115	73	3
20	14	Device control 4	52	34	4	84	54	T	116	74	t
21	15	Neg. acknowledge	53	35	5	85	55	U	117	75	u
22	16	Synchronous idle	54	36	6	86	56	V	118	76	v
23	17	End trans. block	55	37	7	87	57	W	119	77	W
24	18	Cancel	56	38	8	88	58	X	120	78	x
25	19	End of medium	57	39	9	89	59	Y	121	79	Y
26	1 A	Substitution	58	3A	:	90	5 A	2	122	7 A	z
27	1B	Escape	59	3 B	;	91	5 B	[123	7 B	\{
28	1 C	File separator	60	3 C	$<$	92	5 C	1	124	7 C	I
29	1D	Group separator	61	3 D	=	93	5D]	125	7 D	\}
30	1E	Record separator	62	3 E	$>$	94	5 E	\wedge	126	7 E	\sim
31	1 F	Unit separator	63	3 F	?	95	5 F		127	7 F	\square

Name: \qquad
$I D:$ \qquad
Appendix B: Binary to Hexadecimal

Base 10	Base 2	Base 16
0	0000	0
1	0001	1
2	0010	2
3	0011	3
4	0100	4
5	0101	5
6	0110	6
7	0111	7
9	1000	A
10	1010	B
11	1011	C
12	1100	D
13	1101	E
14	1110	F
15		

