Name:______ ID:_____

ECS 17: Data, Logic, and Computing Midterm February 23, 2022

Notes:

- 1) Midterm is open book, open notes...
- 2) You have 50 minutes, no more: I will strictly enforce this.
- 3) You can answer directly on these sheets (preferred), or on loose paper.
- 4) Please write your name at the top right of at least the first page that you turn in!
- 5) Please, check your work!

Proofs

Exercise 1 (1 question, 10 points)

Let a and b be two real numbers, with $a \neq 0$ and $b \neq 0$. Use a **proof by contradiction** to show

that if ab > 0, then $\frac{a}{b} + \frac{b}{a} \ge 2$.

Name:		
<i>ID:</i>		

Exercise 2 (2 questions, each 10 points; total 20 points)

1) Let a and b be two integers. Show that if $a + b\sqrt{2} = 0$, then a = 0 and b = 0.

2) Let *m*, *n*, *p*, *q* be four integers. Show that $m + n\sqrt{2} = p + q\sqrt{2}$ if and only if m=p and n=q.

Exercise 3 (1 question, 10 points)

Let *x* be a real number. Show that $|x - 1| \le x^2 - x + 1$,

where | | stands for the absolute value, defined as $|y| = \begin{cases} y & \text{if } y \ge 0 \\ -y & \text{if } y < 0 \end{cases}$

for *y* real number.

ame:______ ID:_____

Exercise 4 (1 question, 10 points)

Let a and b be two integers. Show that if $(a^2 + b^2)^2$ is even, then a+b is even.

Exercise 5 (1 question, 10 points)

Let a and b be two real numbers. Show that if $a \neq -1$ AND $b \neq -1$ then $a + b + ab \neq -1$ (*Hint*: a + b + ab = (a + 1)(b + 1) - 1).

Name:______
ID:_____

Exercise 6 (1 question, 10 points) Let *a* and *b* be two integers. Show that $a^2 - 4b \neq 2$

Name:______
ID:_____

Appendix

Theorems that you are allowed to use:

- a) Let *n* be an integer. n^2 is even if and only if *n* is even
- b) Let a and b be two integers. If $a^2 + b^2$ is even, then a + b is even
- c) $\forall n \in \mathbb{N}$, n(n+1) is even
- d) $\sqrt{2}$ is irrational
- e) Let *n* be an integer. *n* is even if and only if there exists an integer *k* such that n = 2k.
- f) Let *n* be an integer. *n* is odd if and only if there exists an integer *k* such that n = 2k+1.

g) Let *n* be a positive integer. *n* is a perfect square if and only if there exists an integer *k* such that $n = k^2$.