Data, Logic, and Computing

ECS 17 (Winter 2022)

Patrice Koehl koehl@cs.ucdavis.edu

February 26, 2023

Midterm 2: solutions

Exercise 1 (1 question, 10 points)

Let a and b be two real numbers, with $a \neq 0$ and $b \neq 0$. Use a proof by contradiction to show that if ab > 0, then $\frac{a}{b} + \frac{b}{a} \ge 2$.

Let: p: ab > 0q: $\frac{a}{b} + \frac{b}{a} \ge 2$

and let A be the proposition $p \to q$. We want to show that A is true. We use a proof by contradiction, i.e. we suppose that what we want to show is false, namely that A is not true, i.e. p is true AND q is false.

p is true: ab > 0. Similarly, as q is false, $\frac{a}{b} + \frac{b}{a} < 2$. As ab > 0, we can multiply this inequality by ab without changing its sense; we get:

$$a^2 + b^2 < 2ab$$

which gives

$$a^2 + b^2 - 2ab < 0$$

i.e.

 $(a-b)^2 < 0$

However, $(a - b)^2$ is a square, and therefore $(a - b)^2 \ge 0$. we have reached a contradiction. The proposition A is therefore true.

Exercise 2 2 questions, each 10 points; total 20 points)

 Let a and b be two integers. Show that if a + b√2 = 0, then a = 0 and b = 0. Let:
p: a + b√2 = 0 q: a = 0 and b = 0

and let A be the proposition $p \to q$. We want to show that A is true. We use a proof by contradiction, i.e. we suppose that what we want to show is false, namely that A is not true, i.e. p is true AND q is false.

As q is false, either $a \neq 0$ or $b \neq 0$. As b may be 0, we look at the two corresponding cases:

- a) b = 0. Since p is true, we get a = 0. But this is in contradiction with $\neg q$: we have reached a contradiction
- b) $b \neq 0$. We can then divide by b in p and we obtain:

$$\sqrt{2} = \frac{-a}{b}$$

As -a and b are integers, with $b \neq 0$, this suggests that $\sqrt{2}$ is rational... but we know that this is not true. We have reached a contradiction.

In all cases, we have reached a contradiction. The proposition A is therefore true.

2) Let m, n, p, and q be four integers. Show that $m + n\sqrt{2} = p + q\sqrt{2}$, if and only if m = p and n = q.

Let:

P: $m + n\sqrt{2} = p + q\sqrt{2}$

Q: m = n and p = q

and let A be the proposition $P \leftrightarrow Q$. We want to show that A is true. We prove both $P \rightarrow Q$ and $Q \rightarrow P$.

a) Lest us prove $P \rightarrow Q$. We use a direct proof. We assume P is true, namely that

$$m + n\sqrt{2} = p + q\sqrt{2}$$

which we rewrite as:

$$(m-p) + (n-q)\sqrt{2} = 0$$

As m - p and n - q are both integers, based on part 1, we find that m - p = 0 and n - q = 0, namely m = p and n = q. Therefore Q is true, and consequently $P \to Q$ is true.

b) Lest us prove $Q \to P$. We use a direct proof.

As Q is true, m = p and n = q. Then $m + n\sqrt{2} = p + q\sqrt{2}$, namely P is true. Therefore $Q \to P$ is true.

We have shown that $P \to Q$ and $Q \to P$ are true. Therefore A is true.

Exercise 3 (1 question, 10 points)

Let x be a real number. Show that $|x - 1| \le x^2 - x + 1$, where || is the absolute value.

Let:

P: $|x - 1| \le x^2 - x + 1$

where x is a real number. Let us define A(x) = |x - 1| and $B(x) = x^2 - x + 1$. To show that P is true, we use a proof by case:

a) $x \ge 1$. Then,

$$A(x) = x - 1$$

$$B(x) = x^2 - x + 1$$

Therefore

$$A(x) - B(x) = x - 1 - x^{2} + x - 1$$

= $-(x^{2} - 2x + 1) - 1$
= $-(x - 1)^{2} - 1$
< 0

Therefore $A(x) \leq B(x)$ and P is true.

b) x < 1. Then,

$$A(x) = -x + 1$$

$$B(x) = x^2 - x + 1$$

Therefore

$$\begin{array}{rcl} A(x) - B(x) & = & -x + 1 - x^2 + x - 1 \\ & = & -x^2 \\ & < & 0 \end{array}$$

Therefore $A(x) \leq B(x)$ and P is true.

In al cases, P is true.

Exercise 4 (1 question, 10 points)

Let a and b be two integers. Show that if $(a^2 + b^2)^2$ is even, then a + b is even.

Let: p: $(a^2 + b^2)^2$ is even

q: a + b is even

and let A be the proposition $p \to q$. We want to show that A is true. We use a direct proof. We assume that $(a^2 + b^2)^2$ is even. Let $n = a^2 + b^2$; n is an integer. The assumption is therefore that n^2 is even. We know then that n is even. Therefore $a^2 + b^2$ is even, but this leads to a + b is even, using the theorems we can assume to be true. Therefore q is true, and A is true by direct proof.

Exercise 5 (1 question, 10 points)

Let a and b be two real numbers. Show that if $a \neq -1$ and $b \neq -1$, then $a + b + ab \neq -1$.

Let:

p: $a \neq -1$ and $b \neq -1$

q: $a + b + ab \neq -1$

and let A be the proposition $p \to q$. We want to show that A is true. We use an indirect proof. We need to define first: $\neg p$: a = -1 or b = -1

 $\neg q: a+b+ab = -1$

We assume $\neg q$. Therefore a + b + ab = -1. Using the hint, we find (a + 1)(b + 1) - 1 = -1, i.e. (a + 1)(b + 1) = 0. This leads to a = -1 or b = -1, namely $\neg p$ is true. Therefore A is true by indirect proof.

Exercise 6 (1 question, 10 points)

Let a and b be two integers. Show that $a^2 - 4b \neq 2$.

Let:

P: $a^2 - 4b \neq 2$

where a and b are two integers. To show that P is true, we use a proof by contradiction, namely we assume P is false:

$$a^2 - 4b = 2$$

We get:

$$a^2 = 2 + 4b = 2(1 + 2b)$$

As 1 + 2b is an integer, a^2 is even, and therefore a is even. There exists an integer k such that a = 2k. Replacing above, we get:

$$(2k)^2 - 4b = 24k^2 - 4b = 2$$

After division by 2,

$$2k^2 - 2b = 1$$

 $2k^2 - 2b = 2(k^2 - b)$ and since $k^2 - b$ is an integer, $2k^2 - 2b$ is even. However, 1 is odd: we have reached a contradiction. Therefore P is true.