Data, Logic, and Computing

ECS 17 (Winter 2022)

Patrice Koehl
koehl@cs.ucdavis.edu
February 27, 2023

Midterm 2: solutions

Exercise 1 (2 questions, 20 points total)

Let n be an integer. Give a direct proof and an indirect proof of the proposition, if n is odd then $2 n^{2}+5 n+2$ is odd

We want to prove an implication of the form $p \rightarrow q$ is true, with:
p : n is odd
$\neg p: n$ is even
$q: \quad 2 n^{2}+5 n+2$ is odd
$\neg q: 2 n^{2}+5 n+2$ is even
We use two methods of proof:
a) Direct proof: we show $p \rightarrow q$ is true.

Let us assume that p is true, i.e. that n is odd. There exists and integer k such that $n=2 k+1$. Therefore,

$$
\begin{aligned}
2 n^{2}+5 n+2 & =2(2 k+1)^{2}+5(2 k+1)+2 \\
& =8 k^{2}+18 k+9 \\
& =2\left(4 k^{2}+9 k+4\right)+1
\end{aligned}
$$

As k is an integer, $4 k^{2}+9 k+4$ is an integer which we call l. Therefore $2 n^{2}+5 n+2=2 l+1$, i.e. it is odd.

We have shown that q is true when p is true: the proposition $p \rightarrow q$ is true.
b) Indirect proof: we show $\neg q \rightarrow \neg p$ is true.

Let us assume that $\neg q$ is true, i.e. that $2 n^{2}+5 n+2$ is even. There exists and integer k such that $2 n^{2}+5 n+2=2 k$. Therefore,

$$
\begin{aligned}
2 n^{2}+4 n+n+2 & =2 k \\
n & =2 k-2 n^{2}-4 n-2 \\
& =2\left(k-n^{2}-2 n-1\right)
\end{aligned}
$$

As k and n are integers, $k-n^{2}-2 n-1$ is an integer which we call l. Therefore $n=2 l$, i.e. it is even.

We have shown that $\neg p$ is true when $\neg q$ is true: the proposition $\neg q \rightarrow \neg p$ is true and, by equivalence, $p \rightarrow q$ is true.

Exercise 2 (1 question, 10 points)

Let m and n be 2 integers. Using the method of proof of your choice, show that if $m n$ is odd, then m is odd and n is odd.

We want to prove an implication of the form $p \rightarrow q$ is true, with:
$p: \quad m n$ is odd
$\neg p: m n$ is even
$q: \quad m$ is odd and n is odd
$\neg q: \quad m$ is even or n is even
We use an indirect proof: we show that $\neg q \rightarrow \neg p$ is true.
Let us assume that $\neg q$ is true, namely that m is even or n is even. We consider two cases:
a) m is even. There exists an integer k such that $m=2 k$. Then,

$$
\begin{aligned}
m n & =2 k n \\
& =2(k n)
\end{aligned}
$$

As k and n are integers, $k n$ is an integer which we call l. Therefore $m n=2 l$, i.e. it is even.
b) n is even. There exists an integer k such that $n=2 k$. Then,

$$
\begin{aligned}
m n & =2 k m \\
& =2(k m)
\end{aligned}
$$

As k and m are integers, $k m$ is an integer which we call l. Therefore $m n=2 l$, i.e. it is even.
In both cases, we have shown that $m n$ is even. Therefore $\neg p$ is true when $\neg q$ is true. the proposition $\neg q \rightarrow \neg p$ is true and, by equivalence, $p \rightarrow q$ is true.

Exercise 3 (1 question, 10 points)

Let n be an integer. Use a proof by contradiction to show that $\frac{6 n+1}{2 n+4}$ is not an integer.
Let:
$P: \frac{6 n+1}{2 n+4}$ is not an integer
We use a proof by contradiction. We assume that P is false, i.e. we assume that $\frac{6 n+1}{2 n+4}$ is an integer. Let us name this integer as k. We have:

$$
\frac{6 n+1}{2 n+4}=k
$$

which we rewrite as:

$$
6 n+1=k(2 n+4)
$$

Let $L H S=6 n+1$ and $R H S=k(2 n+4)$. Notice that:

$$
L H S=2(3 n)+1
$$

Since n is an integer, $3 n$ is an integer and therefore LHS is odd. Conversely,

$$
R H S=2(k(n+2))
$$

As k and n are integers, $k(n+2)$ is an integer which we call l. Therefore $R H S=2 l$, i.e. it is even.
Under the assumption that P is false, we find that $L H S=R H S$ with $L H S$ odd and $R H S$ even. Since an even number cannot be equal to an odd number, we have reached a contradiction. Therefore the assumption that P is false, is false, i.e. P is true.

Exercise 4 (1 question, 10 points)

Let n be a natural number (i.e., n is a positive integer different from 0). Use a proof by contradiction to show that if n is a perfect square, then $2 n$ is not a perfect square. (A natural number n is a perfect square if and only if there exists an integer k such that $n=k^{2}$).

We want to prove an implication of the form $p \rightarrow q$ is true, with:
p : n is a perfect square
$\neg p$: n is not a perfect square
q : $2 n$ is not a perfect square
$\neg q$: $2 n$ is a perfect square
We use a proof by contradiction. We assume that $p \rightarrow q$ is false, i.e. that p is true AND q is false.

Since p is true, n is a perfect square: there exists an integer k such that $n=k^{2}$.
Since q is false, $2 n$ is a perfect square: there exists an integer l such that $2 n=l^{2}$.
Replacing n by k^{2}, we get:

$$
2 k^{2}=l^{2}
$$

As n is non zero, l is not zero. Therefore:

$$
2=\frac{k^{2}}{l^{2}}
$$

Taking the square root (the numbers are now real),

$$
\sqrt{2}=\frac{|k|}{|l|}
$$

As k is an integer, $|k|$ is an integer. Similarly, as l is an integer, $|l|$ is an integer. This would lead to $\sqrt{2}$ is rational: this is a contradiction, as we know that $\sqrt{2}$ is irrational.

Therefore the assumption that $p \rightarrow q$ is false, is false, i.e. $p \rightarrow q$ is true.

Exercise 5 (1 question, 10 points)

Let x be a real number. Show that if $x^{3}+x^{2}-2 x<0$, then $x<1$.
We want to prove an implication of the form $p \rightarrow q$ is true, with:

$$
\begin{aligned}
p: & x^{3}+x^{2}-2 x<0 \\
\neg p: & x^{3}+x^{2}-2 x \geq 0 \\
q: & x<1 \\
\neg q: & x \geq 1
\end{aligned}
$$

We use an indirect proof, i.e. we prove that $\neg q \rightarrow \neg p$ is true. We assume that $\neg q$ is true, i.e. that $x \geq 1$.

Let $A=x^{3}+x^{2}-2 x$. Notice that,

$$
\begin{aligned}
A & =x^{3}+x^{2}-2 x \\
& =x(x-1)(x+2)
\end{aligned}
$$

We know that:
i) $x>0$ since $x \geq 1$
ii) $x-1 \geq 0$ since $x \geq 1$
iii) $x+2>0$ since $x \geq 1$

The three terms in A are positive: A is positive. Therefore $\neg p$ is true.
We have shown that $\neg p$ is true when $\neg q$ is true. the proposition $\neg q \rightarrow \neg p$ is true and, by equivalence, $p \rightarrow q$ is true.

Exercise 6 (1 question, 10 points)

Prove or disprove that there exits an integer n such that $n^{2}+3 n+2$ is odd.
Let:
P : There exists an integer n such that $n^{2}+3 n+2$ is odd
P is likely to be false. To prove that it is false, we need to show that $\neg P$ is true, namely that $\neg P$: For all integers $n, n^{2}+3 n+2$ is even.

We use a proof by case:
case a) n is even.
There exists an integer k such that $n=2 k$. Then,

$$
\begin{aligned}
n^{2}+3 n+2 & =(2 k)^{2}+3(2 k)+2 \\
& =4 k^{2}+6 k+2 \\
& =2\left(2 k^{2}+3 k+1\right)
\end{aligned}
$$

As k is an integer, $2 k^{2}+3 k+1$ is an integer which we call l. Therefore $n^{2}+3 n+2=2 l$, i.e. it is even.
case b) n is odd.
There exists an integer k such that $n=2 k+1$. Then,

$$
\begin{aligned}
n^{2}+3 n+2 & =(2 k+1)^{2}+3(2 k+1)+2 \\
& =4 k^{2}+4 k+1+6 k+3+2 \\
& =2\left(2 k^{2}+5 k+3\right)
\end{aligned}
$$

As k is an integer, $2 k^{2}+5 k+3$ is an integer which we call l. Therefore $n^{2}+3 n+2=2 l$, i.e. it is even.

In all cases, $n^{2}+3 n+2$ is even.
We have shown that $\neg P$ is true, therefore the original proposition P is false.

