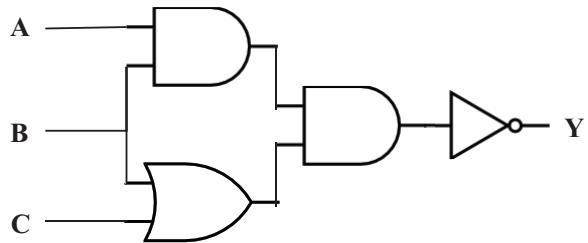


Data, Logic, and Computing

ECS 17 (Winter 2026)

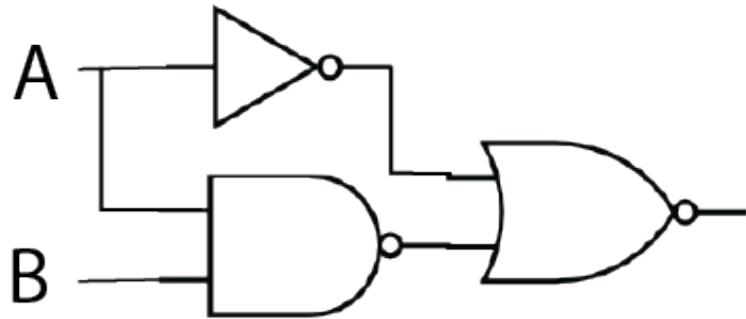

Patrice Koehl
koehl@cs.ucdavis.edu

January 23, 2026

Homework 4

Exercise 1

Find the output/ logic table for this logic gate circuit. Convert it into a Boolean expression


A	B	C	AB	B + C	AB(B + C)	Y
1	1	1	1	1	1	0
1	1	0	1	1	1	0
1	0	1	0	1	0	1
1	0	0	0	0	0	1
0	1	1	0	1	0	1
0	1	0	0	1	0	1
0	0	1	0	1	0	1
0	0	0	0	0	0	1

The corresponding Boolean expression is $\overline{AB(B + C)}$.

Exercise 2

Find the output/ logic table for this logic gate circuit. Can you find a simpler logic gate that would perform the same operation on A and B?

The corresponding Boolean expression is $\overline{A} + \overline{AB}$. Note however that the output of this logic gate is exactly the output of the AND logic gate.

A	B	\bar{A}	$\bar{A}\bar{B}$	$\bar{A} + \bar{A}\bar{B}$	$\bar{A} + \bar{A}\bar{B}$
1	1	0	0	0	1
1	0	0	1	1	0
0	1	1	1	1	0
0	0	1	1	1	0

Exercise 3

Build the logic tables for the Boolean expressions:

a) $\bar{A}B$

A	B	\bar{A}	$\bar{A}B$
1	1	0	0
1	0	0	0
0	1	1	1
0	0	1	0

b) $\bar{A}\bar{B}$

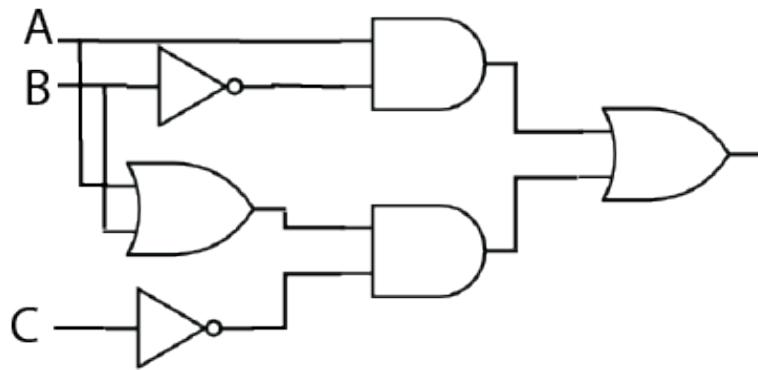
A	B	\bar{B}	$A\bar{B}$	$A\bar{B}$
1	1	0	0	1
1	0	1	1	0
0	1	0	0	1
0	0	1	0	1

c) $A + \bar{B}$

A	B	\bar{B}	$A + \bar{B}$
1	1	0	1
1	0	1	1
0	1	0	0
0	0	1	1

d) $\bar{A} + \bar{B}$

A	B	\bar{B}	$A + \bar{B}$	$\overline{A + \bar{B}}$
1	1	0	1	0
1	0	1	1	0
0	1	0	0	1
0	0	1	1	0

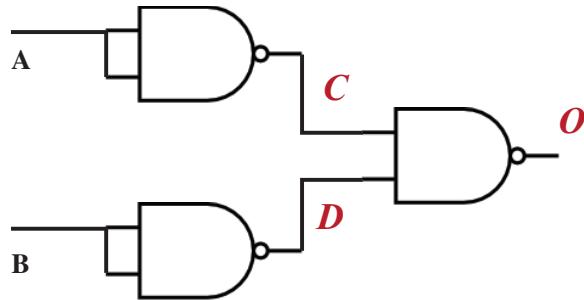
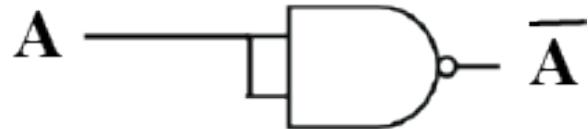

Exercise 3

An engineer hands you a piece of paper with the following Boolean expression on it, and tells you to build a gate circuit to perform that function:

$$A\bar{B} + \bar{C}(A + B)$$

Draw a logic gate circuit for this function. Build its logic table

One solution is:



We build its truth table:

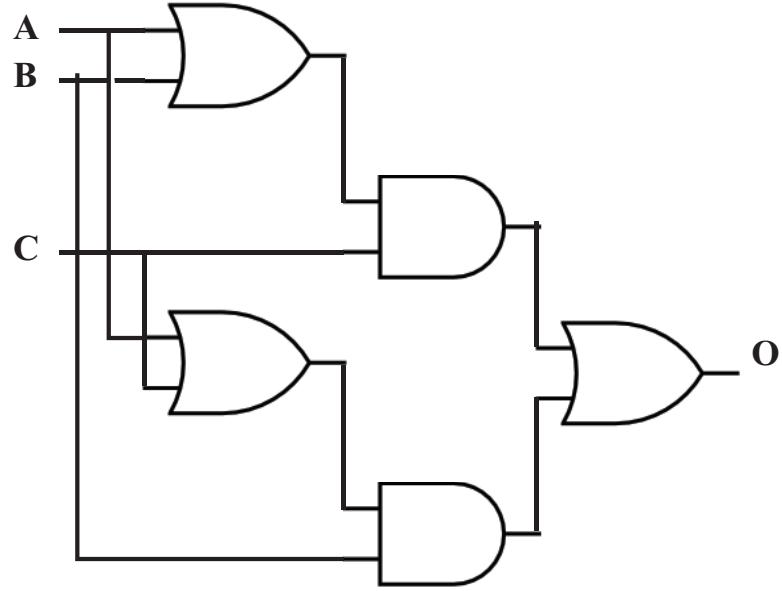
A	B	C	\bar{B}	$A \cdot \bar{B}$	\bar{C}	$A + B$	$\bar{C}(A + B)$	$A\bar{B} + \bar{C}(A + B)$
1	1	1	0	0	0	1	0	0
1	1	0	0	0	1	1	1	1
1	0	1	1	1	0	1	0	1
1	0	0	1	1	1	1	1	1
0	1	1	0	0	0	1	0	0
0	1	0	0	0	1	1	1	1
0	0	1	1	0	0	0	0	0
0	0	0	1	0	1	0	0	0

Exercise 5

Suppose we wished to have an *OR* gate for some logic purpose, but did not have any *OR* gates on hand. Instead, we only had *NAND* gates in our parts collection. Draw a diagram whereby multiple *NAND* gates are connected together to form an *OR* gate.

(Hint: the *NOT* gate can be formed using:)

We build the logic table for this gate:


A	B	C	D	O	$A + B$
1	1	0	0	1	1
1	0	0	1	1	1
0	1	1	0	1	1
0	0	1	1	0	0

The output of this gate is fully equivalent to the *OR* gate.

Exercise 6

Design a circuit that implements majority voting for three individuals (i.e. the output of the circuit is 1 if two at least of the inputs are 1, and 0 otherwise). Build its logic table. (Hint: consider the Boolean expression $(A + B) \cdot C + (A + C) \cdot B$).

One solution is:

To check that this is what we need, we build its logic table:

A	B	C	Expected output	$A + B$	$(A + B) \cdot C$	$A + C$	$(A + C) \cdot B$	$(A + B) \cdot C + (A + C) \cdot B$
1	1	1	1	1	1	1	1	1
1	1	0	1	1	0	1	1	1
1	0	1	1	1	1	1	0	1
1	0	0	0	1	0	1	0	0
0	1	1	1	1	1	1	1	1
0	1	0	0	1	0	0	0	0
0	0	1	0	0	0	1	0	0
0	0	0	0	0	0	0	0	0

$0 = (A + B) \cdot C + (A + C) \cdot B$ is the expected output.