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Exercise 1

Determine the truth values of the following statements; justify your answers:

a) ∀n ∈ N, (n+ 2) > n

The statement is True. Let us prove it.

Let n be a natural number. Let us define A = n + 2 and B = n. We notice that A − B =
n+ 2− n = 2 > 0. Therefore, A > B, i.e. n+ 2 > n. As this is true for all n, the statement
is true.

b) ∃n ∈ N, 2n = 3n

The statement is False. Let us prove it.

Let us solve first 2n = 3n where n is an integer. We find 3n − 2n = 0, therefore n = 0.
Therefore, the equation 2n = 3n is only true for n = 0. However, 0 does not belong to N. We
can conclude that ∀n ∈ N, 2n ̸= 3n; the property is false.

c) ∀n ∈ Z, 3n ≤ 4n

The statement is False. Let us prove it.

Let n be an integer. 3n ≤ 4n is equivalent to 0 ≤ n. This means that ∀n < 0, 3n > 4n.
Therefore, we can find n ∈ Z such that 3n > 4n (for example n = −1). The statement is
false.

d) ∃x ∈ R, x4 < x2

The statement is True. Let us prove it.

Notice that the statement is based on existence: we only need to find one example. if x = 1
2 .

x2 = 1
4 and x4 = 1

16 , in which case x4 < x2.

Exercise 2

Show that the following statements are true.
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a) Let x be a real number. Prove that if x3 is irrational, then x is irrational.

Proof: Let x be a real number. We define the two statements: P (x) : x3 is irrational, and
Q(x) : x is irrational. We want to show P (x) → Q(x). We will prove instead its contrapositive:
¬Q(x) → ¬P (x), where ¬Q(x) : x is rational, and ¬P (x) : x3 is rational.

Hypothesis: ¬Q(x) is true, namely x is rational. By definition, there exists two integers a
and b, with b ̸= 0, such that x = a

b . Then,

x3 =
a3

b3

Since a is an integer, a3 is an integer. Similarly, since b is a non-zero integer, b3 is a non zero
integer. Therefore x3 is rational, which concludes the proof.

b) Let x be a positive real number. Prove that if x is irrational, then
√
x is irrational.

Proof: Let x be a real number. We define the two statements: P (x) : x is irrational,
and Q(x) :

√
x is irrational. We want to show P (x) → Q(x). We will prove instead its

contrapositive: ¬Q(x) → ¬P (x), where ¬Q(x) :
√
x is rational, and ¬P (x) : x is rational.

Hypothesis: ¬Q(x) is true, namely
√
x is rational. By definition, there exists two integers a

and b, with b ̸= 0, such that
√
x = a

b . Then,

x =
a2

b2

Since a is an integer, a2 is an integer. Similarly, since b is a non-zero integer, b2 is a non zero
integer. Therefore x is rational, which concludes the proof.

c) Prove or disprove that if a and b are two rational numbers, then ab is also a rational number.

The property is in fact not true. Let a = 2 and b = 1
2 . Then ab = 2

1
2 =

√
2; but we have

shown in class that
√
2 is irrational.

d) let n be a natural number. Show that n is even if and only if 3n+ 8 is even.

Proof. Let n be a natural number and let P (n) and Q(n) be the propositions n is even, and
3n+ 8 is even, respectively. We will show that P (n) → Q(n) and Q(n) → P (n).

i) P (n) → Q(n)

Hypothesis: n is even. By definition of even numbers, there exists and integer k such
that n = 2k. Then,

3n+ 8 = 6k + 8 = 2(3k + 4)

Since 3k + 4 is an integer, 3n+ 8 can be written in the form 2k′, where k′ is an integer;
therefore, 3n+ 8 is even.

ii) Q(n) → P (n)

We will show instead its contrapositive, namely ¬P (n) → ¬Q(n), where ¬P (n) : n is
odd, and ¬Q(n) : 3n+ 8 is odd.

Hypothesis: n is odd. By definition of even numbers, there exists and integer k such
that n = 2k + 1. Then,

3n+ 8 = 6k + 3 + 8 = 2(3k + 5) + 1

Since 3k + 5 is an integer, 3n + 8 can be written in the form 2k′ + 1, where k′ is an
integer; therefore, 3n+ 8 is odd.
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e) Prove that either 4 × 10769 + 22 or 4 × 10769 + 23 is not a perfect square. Is your proof
constructive, or non-constructive?

Let n = 4× 10769 + 22. The two numbers are n and n+ 1.

Proof by contradiction: Let us suppose that both n and n+ 1 are perfect squares:

∃k ∈ Z, k2 = n

∃l ∈ Z, l2 = n+ 1

Then

l2 = k2 + 1

(l − k)(l + k) = 1

Since l and k are integers, there are only two cases:

– l − k = 1 and l + k = 1, i.e. l = 1 and k = 0. Then we would have k2 = 0, i.e. n = 0:
contradiction

– l − k = −1 and l + k = −1, i.e. l = −1 and k = 0. Again, contradiction.

We can conclude that the proposition is true.

Exercise 3

Let n be a natural number and let a1, a2, . . . , an be a set of n real numbers. Prove that at least one
of these numbers is greater than, or equal to the average of these numbers. What kind of proof did
you use?

We use a proof by contradiction.
Suppose none of the real numbers a1, a2, ..., an is greater than or equal to the average of these

numbers, denoted by a.
By definition

a =
a1 + a2 + ...+ an

n

Our hypothesis is that:

a1 < a

a2 < a

... < ...

an < a

We sum up all these equations and get the following:

a1 + a2 + ...+ an < n ∗ a

Replacing a in equation (9) by its value given in equation (4) we get:
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a1 + a2 + ...+ an < a1 + a2 + ...+ an

This is not possible: a number cannot be strictly smaller than itself: we have reached a contra-
diction. Therefore our hypothesis was wrong, and the original statement was correct.

Exercise 4

Use Exercise 3 to show that if the first 10 strictly positive integers are placed around a circle, in
any order, then there exist three integers in consecutive locations around the circle that have a sum
greater than or equal to 17.

Let a1, a2, ..., a10 be an arbitrary order of 10 positive integers from 1 to 10 being placed around
a circle:

a
1

a
2

a
3

a
4

a
5a

6

a
7

a
8

a
9

a
10

Since the ten numbers a correspond to the first 10 positive integers, we get:

a1 + a2 + ...+ a10 = 1 + 2 + ...+ 10 = 55 (1)

Notice that the a1, a2, ..., a10 are not necessarily in the order 1, 2, ..., 10. They do include
however the ten integers from 1 to 10: these is why the sum is 55

Let us now consider the different sums Si of three consecutive sites around the circle. There
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are 10 such sums:

S1 = a1 + a2 + a3

S2 = a2 + a3 + a4

S3 = a3 + a4 + a5

S4 = a4 + a5 + a6

S5 = a5 + a6 + a7

S6 = a6 + a7 + a8

S7 = a7 + a8 + a9

S8 = a8 + a9 + a10

S9 = a9 + a10 + a1

S10 = a10 + a1 + a2

We do not know the values of the individual sums Si; however, we can compute the sum of
these numbers:

S1 + S2 + ...+ S10 = (a1 + a2 + a3) + (a2 + a3 + a4) + ...+ (a10 + a1 + a2)

= 3 ∗ (a1 + a2 + ...+ a10)

= 3 ∗ 55
= 165

The average of S1, S2, ..., S10 is therefore:

S =
S1 + S2 + ...+ S10

10

=
165

10
= 16.5

Based on the conclusion of Exercise 3, at least one of S1, S2, ..., S10 is greater to or equal to S,
i.e., 16.5. Because S1, S2, ..., S10 are all integers, they cannot be equal to 16.5. Thus, at least one
of S1, S2, ..., S10 is greater to or equal to 17.

5


