Data, Logic, and Computing

ECS 17 (Winter 2025)

Patrice Koehl koehl@cs.ucdavis.edu

February 27, 2025

Homework 8

Exercise 1

Using induction, show that $\forall n \in \mathbb{N}, \sum_{i=1}^{n} i^2 = \frac{n(n+1)(2n+1)}{6}.$

Exercise 2

Using induction, show that
$$\forall n \in \mathbb{N}$$
, $\sum_{i=1}^{n} i(i+1)(i+2) = \frac{n(n+1)(n+2)(n+3)}{4}$.

Exercise 3

Show that
$$\forall n \in \mathbb{N}, n > 1, \sum_{i=1}^{n} \frac{1}{i^2} < 2 - \frac{1}{n}$$

Exercise 4

Use a proof by induction to show that $\forall n \in \mathbb{N}, n > 3, n^2 - 7n + 12 \ge 0$.

Exercise 5

A sequence a_0, a_1, \ldots, a_n of natural numbers is defined by $a_0 = 2$ and $a_{n+1} = (a_n)^2$, $\forall n \in \mathbb{N}$. Find a closed form formula for the term a_n and prove that your formula is correct.

Exercise 6

Use the method of proof by induction to show that any amount of postage of 24 cents or more can be formed using just 5-cent and 7-cent stamps.