Data, Logic, and Computing

ECS 17 (Winter 2024)
Patrice Koehl
koehl@cs.ucdavis.edu
February 18, 2024

Homework 8 - For 3/06/2024

Exercise 1

Show that $\forall n \in \mathbb{N}, \sum_{i=1}^{n} i^{2}=\frac{n(n+1)(2 n+1)}{6}$.
Let $P(n)$ be the proposition: $\sum_{i=1}^{n} i^{2}=\frac{n(n+1)(2 n+1)}{2}$. Let us also define $\operatorname{LHS}(n)=\sum_{i=1}^{n} i^{2}$ and $R H S(n)=\frac{n(n+1)(2 n+1)}{2}$

- Basis step: $P(1)$ is true:

$$
\begin{aligned}
& \text { LHS }(1)=\sum_{i=1}^{1} i^{2}=1 \\
& \text { RHS }(1)=\frac{1(1+1)(2+1)}{6}=\frac{2 \times 3}{6}=1
\end{aligned}
$$

- Inductive step: Let k be a positive integer $(k \leq 0)$, and let us suppose that $P(k)$ is true. We want to show that $P(k+1)$ is true.
Let us compute $\operatorname{LHS}(k+1)=\sum_{i=1}^{k+1} i^{2}$:

$$
\begin{aligned}
\operatorname{LHS}(k+1) & =\sum_{i=1}^{k} i^{2}+(k+1)^{2} \\
& =L H S(k)+(k+1)^{2} \\
& =R H S(k)+(k+1)^{2} \\
& =\frac{k(k+1)(2 k+1)}{6}+(k+1)^{2} \\
& =\frac{k(k+1)(2 k+1)+6(k+1)^{2}}{6} \\
& =\frac{(k+1)\left(2 k^{2}+k+6 k+6\right)}{6} \\
& =\frac{(k+1)\left(2 k^{2}+7 k+6\right)}{6} \\
& =\frac{(k+1)(k+2)(2 k+3)}{6}
\end{aligned}
$$

And:

$$
R H S(k+1)=\frac{(k+1)(k+2)(2 k+3)}{6}
$$

Therefore $\operatorname{LHS}(k+1)=R H S(k+1)$, which validates that $P(k+1)$ is true.

The principle of proof by mathematical induction allows us to conclude that $P(n)$ is true for all n.

Exercise 2

Show that $\forall n \in \mathbb{N}, \sum_{i=1}^{n} i(i+1)(i+2)=\frac{n(n+1)(n+2)(n+3)}{4}$.
Let $P(n)$ be the proposition: $\sum_{i=1}^{n} i(i+1)(i+2)=\frac{n(n+1)(n+2)(n+3)}{4}$. We define LHS $(n)=$ $\sum_{i=1}^{n} i(i+1)(i+2)$ and $R H S(n)=\frac{n(n+1)(n+2)(n+3)}{4}$

- Basis step: $P(1)$ is true:

$$
\begin{aligned}
& \operatorname{LHS}(1)=1 *(1+1) *(1+2)=6 \\
& \operatorname{RHS}(1)=\frac{1 *(1+1) *(1+2) *(1+3)}{4}=6
\end{aligned}
$$

- Inductive step: Let k be a positive integer $(k \leq 0)$, and let us suppose that $P(k)$ is true. We want to show that $P(k+1)$ is true.

Let us compute $L H S(k+1)$:

$$
\begin{aligned}
\operatorname{LHS}(k+1) & ==\sum_{i=1}^{k+1} i(i+1)(i+2) \\
& =L H S(k)+(k+1)(k+2)(k+3) \\
& =\frac{k(k+1)(k+2)(k+3)}{4}+(k+1)(k+2)(k+3) \\
& =\frac{k(k+1)(k+2)(k+3)}{4}+\frac{4(k+1)(k+2)(k+3)}{4} \\
& =\frac{(k+1)(k+2)(k+3)(k+4)}{4}
\end{aligned}
$$

Let us compute $R H S(k+1)$:

$$
R H S(k+1)=\frac{(k+1)(k+2)(k+3)(k+4)}{4}
$$

Therefore $\operatorname{LHS}(k+1)=\operatorname{RHS}(k+1)$, which validates that $P(k+1)$ is true.

The principle of proof by mathematical induction allows us to conclude that $P(n)$ is true for all n.

Exercise 3

Show that $\forall n \in \mathbb{N}, n>1, \sum_{i=1}^{n} \frac{1}{\bar{i}^{2}}<2-\frac{1}{n}$.
Let $P(n)$ be the proposition: $\sum_{i=1}^{n} \frac{1}{\bar{i}^{2}}<2-\frac{1}{n}$. Let us define $\operatorname{LHS}(n)=\sum_{i=1}^{n} \frac{1}{\bar{i}^{2}}$ and $R H S(n)=$ $2-\frac{1}{n}$. We want to show that $P(n)$ is true for all $n>1$.

- Basis step: We show that $P(2)$ is true:

$$
\begin{aligned}
& \operatorname{LHS}(2)=1+\frac{1}{4}=\frac{5}{4} \\
& \operatorname{RHS}(2)=2-\frac{1}{2}=\frac{6}{4}
\end{aligned}
$$

Therefore $\operatorname{LHS}(2)<R H S(2)$ and $P(2)$ is true.

- Inductive step: Let k be a positive integer greater than $1(k>1)$, and let us suppose that $P(k)$ is true. We want to show that $P(k+1)$ is true.

$$
L H S(k+1)=L H S(k)+\frac{1}{(k+1)^{2}}
$$

Since $P(k)$ is true, we find:

$$
\operatorname{LHS}(k+1)<2-\frac{1}{k}+\frac{1}{(k+1)^{2}}
$$

Since $k+1>k, \frac{1}{(k+1)^{2}}<\frac{1}{k(k+1)}$.
Therefore

$$
\operatorname{LHS}(k+1)<2-\frac{1}{k}+\frac{1}{k(k+1)}
$$

We can use the property : $\frac{1}{k(k+1)}=\frac{1}{k}-\frac{1}{k+1}$:

$$
\begin{aligned}
& \operatorname{LHS}(k+1)<2-\frac{1}{k}+\frac{1}{k}-\frac{1}{k+1} \\
& \operatorname{LHS}(k+1)<2-\frac{1}{k+1}
\end{aligned}
$$

Since $\operatorname{RHS}(k+1)=2-\frac{1}{k+1}$, we get $\operatorname{LHS}(k+1)<\operatorname{RHS}(k+1)$ which validates that $P(k+1)$ is true.

The principle of proof by mathematical induction allows us to conclude that $P(n)$ is true for all $n>1$.

Exercise 4

Use a proof by induction to show that $\forall n \in \mathbb{N}, n>3, n^{2}-7 n+12 \geq 0$.
Let $P(n)$ be the proposition: $n^{2}-7 n+12 \geq 0$. We want to show that $P(n)$ is true for n greater than 3. Let us define $\operatorname{LHS}(n)=n^{2}-7 n+12$.
Notice that $L H S(1)=6, L H S(2)=2$ and $L H S(3)=0$ hence $P(1), P(2)$ and $P(3)$ are true.

- Basis step: $P(4)$ is true:

$$
\operatorname{LHS}(4)=4^{2}-7 * 4+12=0
$$

Therefore $\operatorname{LHS}(4) \geq 0$ and $P(4)$ is true.

- Inductive step: Let k be a positive integer greater than $3(k>3)$, and let us suppose that $P(k)$ is true. We want to show that $P(k+1)$ is true.

$$
\begin{aligned}
\operatorname{LHS}(k+1) & =(k+1)^{2}-7(k+1)+12 \\
& =k^{2}+2 k+1-7 k-7+12 \\
& =\left(k^{2}-7 k+12\right)+(2 k-6)
\end{aligned}
$$

Since $P(k)$ is true, we know that $k^{2}-7 k+12 \geq 0$. Since $k \geq 4,2 k-6>0$. Therefore, $(k+1)^{2}-7(k+1)+12>0$.
This validates that $P(k+1)$ is true.

The principle of proof by mathematical induction allows us to conclude that $P(n)$ is true for all $n>3$.

Exercise 5: 10 points

A sequence $a_{0}, a_{1}, \ldots, a_{n}$ of natural numbers is defined by $a_{0}=2$ and $a_{n+1}=\left(a_{n}\right)^{2}, \quad \forall n \in \mathbb{N}$. Find a closed form formula for the term a_{n} and prove that your formula is correct.

Let is first compute a few terms in the sequence:

$$
\begin{aligned}
& a_{0}=2=2^{0} \\
& a_{1}=\left(a_{0}\right)^{2}=4=2^{2} \\
& a_{2}=\left(a_{1}\right)^{2}=16=2^{4} \\
& a_{3}=\left(a_{2}\right)^{2}=196=2^{8}
\end{aligned}
$$

We notice two things:
i) each term a_{n} is a power of 2
ii) the power coefficient is itself a power of 2

Based on these observations, we assume that $a_{n}=2^{2^{n}}$. Note that this is true for $n=0, n=1$, $n=2$, and $n=3$. Let us show that it is true for all n non negative integers.

Let us define: $A(n)=2^{2^{n}}$ and let us define $P(n): a_{n}=A(n)$; we want to show that $P(n)$ is true, for all $n \in \mathbb{Z}, n \geq 0$.
a) Basis step: we want to show that $P(0)$ is true.
$a_{0}=2$
$A(0)=2^{2^{0}}=2^{1}=2$
Therefore $a_{0}=A(0)$ and $p(0)$ is true.
b) Inductive Step

I want to show $p(k) \rightarrow p(k+1)$ whenever $k \geq 0$
Hypothesis: $p(k)$ is true, i.e. $a_{k}=A(k)_{\text {i }}$ i.e. $a_{k}=2^{2^{k}}$.
Then:

$$
\begin{aligned}
a_{k+1} & =\left(a_{k}\right)^{2} \\
& =\left(2^{2^{k}}\right)^{2} \\
& =2^{2^{k} \times 2} \\
& =2^{2^{k+1}} \\
& =A_{k+1}
\end{aligned}
$$

Therefore $a_{k+1}=A(k+1)$ which validates that $p(k+1)$ is true.

The principle of proof by mathematical induction allows us to conclude that $p(n)$ is true for all $n \geq 0$.

Exercise 6

Show that $\forall n \in \mathbb{N} f_{1}^{2}+f_{2}^{2}+\ldots+f_{n}^{2}=f_{n} f_{n+1}$ where f_{n} are the Fibonacci numbers.
Let $P(n)$ be the proposition: $f_{1}^{2}+f_{2}^{2}+\ldots+f_{n}^{2}=f_{n} f_{n+1}$
where f_{n} are the Fibonacci numbers. Let us define $\operatorname{LHS}(n)=f_{1}^{2}+f_{2}^{2}+\ldots+f_{n}^{2}$ and $R H S(n)=$ $f_{n} f_{n+1}$.

We want to show that $P(n)$ is true for all n; we use a proof by induction.

- Basis step: $P(1)$ is true:

$$
\begin{aligned}
\operatorname{LHS}(2) & =f_{1}^{2}=1^{2}=1 \\
\operatorname{RHS}(2) & =f_{1} f_{2}=1 .
\end{aligned}
$$

- Inductive step: Let k be a positive integer, and let us suppose that $P(k)$ is true. We want to show that $P(k+1)$ is true.
Then

$$
\begin{aligned}
\operatorname{LHS}(k+1) & =f_{1}^{2}+f_{2}^{2}+\ldots+f_{k}^{2}+f_{k+1}^{2} \\
& =f_{k} f_{k+1}+f_{k+1}^{2} \\
& =f_{k+1}\left(f_{k}+f_{k+1}\right) \\
& =f_{k+1} f_{k+2}
\end{aligned}
$$

and

$$
R H S(k+1)=f_{k+1} f_{k+2}
$$

Therefore $\operatorname{LHS}(k+1)=R H S(k+1)$, which validates that $P(k+1)$ is true.

The principle of proof by mathematical induction allows us to conclude that $P(n)$ is true for all n.

Exercise 7

Show that $\forall n \in \mathbb{N} f_{0}-f_{1}+f_{2}-\ldots-f_{2 n-1}+f_{2 n}=f_{2 n-1}-1$ where f_{n} are the Fibonacci numbers.
Let $P(n)$ be the proposition: $f_{0}-f_{1}+f_{2}-\ldots-f_{2 n-1}+f_{2 n}=f_{2 n-1}-1$
where f_{n} are the Fibonacci numbers. Let us define $\operatorname{LHS}(n)=f_{0}-f_{1}+f_{2}-\ldots-f_{2 n-1}+f_{2 n}$ and $R H S(n)=f_{2 n-1}-1$.

We want to show that $P(n)$ is true for all $n>0$; we use a proof by induction.

- Basis step:

$$
\begin{array}{r}
\operatorname{LHS}(1)=f_{0}-f_{1}+f_{2}=0-1+1=0 \\
\operatorname{RHS}(1)=f_{1}-1=1-1=0
\end{array}
$$

Therefore $\operatorname{LHS}(1)=R H S(1)$ and $P(1)$ is true.

- Inductive step: Let k be a positive integer, and let us suppose that $P(k)$ is true. We want to show that $P(k+1)$ is true.
Then

$$
\begin{aligned}
\operatorname{LHS}(k+1) & =f_{0}-f_{1}+\ldots-f_{2 k-1}+f_{2 k}-f_{2 k+1}+f_{2 k+2} \\
& =f_{2 k-1}-1-f_{2 k+1}+f_{2 k+2} \\
& =f_{2 k-1}-1-f_{2 k+1}+\left(f_{2 k}+f_{2 k+1}\right) \\
& =f_{2 k-1}+f_{2 k}-1 \\
& =f_{2 k+1}-1
\end{aligned}
$$

and

$$
R H S(k+1)=f_{2 k+1}-1
$$

Therefore $\operatorname{LHS}(k+1)=R H S(k+1)$, which validates that $P(k+1)$ is true.
The principle of proof by mathematical induction allows us to conclude that $P(n)$ is true for all n.

Exercise 8: 10 points

Use the method of proof by induction to show that any amount of postage of 12 cents or more can be formed using just 4 -cent and 5 -cent stamps.

Let $P(n)$ be the property: the amount of postage of n cents can be formed using just 4-cent and 5-cent stamps. We want the show that $P(n)$ is true, for all $n \geq 12$.

Let us first analyze what this property means. We can rewrite it as: "There exists two nonnegative integers m and p such that $n=4 m+5 p$. We prove the property using induction.

- Basis step: We want to show that $P(12)$ is true.

Note that $12=4 \times 3+5 \times 0$. We found a pair of non negative integers $(m, p)=(3,0)$ such that $12=4 m+5 p . \mathrm{P}(12)$ is therefore true.

- induction step: We suppose that $P(k)$ is true, for $k \geq 12$, and we want to show that $P(k+1)$ is true.

Since $P(k)$ is true, there exists two non negative integers (m, p) such that

$$
k=4 m+5 p
$$

Adding 1 to this equation, we get:

$$
k+1=4 m+5 p+1
$$

We notice that 1 can be written as 5-4. In which case:

$$
\begin{aligned}
k+1 & =4 m+5 p+5-4 \\
& =4(m-1)+5(p+1)
\end{aligned}
$$

$m-1$ may not be non-negative however, based on the value of m. We therefore distinguish two cases:

- $m \neq 0$ In this case, $m-1$ is non negative. We found a pair of non negative integers $\left(m^{\prime}, p^{\prime}\right)=(m-1, p+1)$ such that $k+1=4 m^{\prime}+5 p^{\prime} . \mathrm{P}(\mathrm{k}+1)$ is therefore true.
- $m=0$ In this case, $m-1$ is negative. Let us go back to

$$
\begin{aligned}
k+1 & =4 m+5 p+1 \\
& =5 p+1
\end{aligned}
$$

Since $m=0$. We note first that $p \geq 3$ as $k \geq 12$. We notice then that $1=16-15$. In this case:

$$
\begin{aligned}
k+1 & =5 p+16-15 \\
& =4 \times 4+5(p-3)
\end{aligned}
$$

with 4 and $p-3$ being non negative. We found a pair of non negative integers $\left(m^{\prime}, p^{\prime}\right)=$ $(4, p-3)$ such that $k+1=4 m^{\prime}+5 p^{\prime} . \mathrm{P}(\mathrm{k}+1)$ is therefore true.

In both cases, $P(k+1)$ is true.
The principle of proof by mathematical induction allows us to conclude that $P(n)$ is true for all $n \geq 12$.

