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H(x) true, but we cannot conclude that Lola is one such x.
19. a) Fallacy of affirming the conclusion b) Fallacy of beg-
ging the question c) Valid argument using modus tollens
d) Fallacy of denying the hypothesis 21. By the second
premise, there is some lion that does not drink coffee. Let
Leo be such a creature. By simplification we know that Leo
is a lion. By modus ponens we know from the first premise
that Leo is fierce. Hence, Leo is fierce and does not drink
coffee. By the definition of the existential quantifier, there
exist fierce creatures that do not drink coffee, that is, some
fierce creatures do not drink coffee. 23. The error occurs in
step (5), because we cannot assume, as is being done here,
that the c that makes P true is the same as the c that makes Q

true. 25. We are given the premises ∀x(P (x)→Q(x)) and
¬Q(a). We want to show ¬P(a). Suppose, to the contrary,
that ¬P(a) is not true. Then P(a) is true. Therefore by uni-
versal modus ponens, we have Q(a). But this contradicts the
given premise ¬Q(a). Therefore our supposition must have
been wrong, and so ¬P(a) is true, as desired.

27. Step Reason
1. ∀x(P (x) ∧ R(x)) Premise
2. P(a) ∧ R(a) Universal instantiation from (1)
3. P(a) Simplification from (2)
4. ∀x(P (x) → Premise

(Q(x) ∧ S(x)))

5. Q(a) ∧ S(a) Universal modus ponens from (3)
and (4)

6. S(a) Simplification from (5)
7. R(a) Simplification from (2)
8. R(a) ∧ S(a) Conjunction from (7) and (6)
9. ∀x(R(x) ∧ S(x)) Universal generalization from (5)

29. Step Reason
1. ∃x¬P(x) Premise
2. ¬P(c) Existential instantiation from (1)
3. ∀x(P (x) ∨Q(x)) Premise
4. P(c) ∨Q(c) Universal instantiation from (3)
5. Q(c) Disjunctive syllogism from (4)

and (2)
6. ∀x(¬Q(x) ∨ S(x)) Premise
7. ¬Q(c) ∨ S(c) Universal instantiation from (6)
8. S(c) Disjunctive syllogism from (5)

and (7)
9. ∀x(R(x) → ¬S(x)) Premise
10. R(c) → ¬S(c) Universal instantiation from (9)
11. ¬R(c) Modus tollens from (8) and (10)
12. ∃x¬R(x) Existential generalization from

(11)

31. Let p be “It is raining”; let q be “Yvette has her umbrella”;
let r be “Yvette gets wet.” Assumptions are¬p∨q,¬q∨¬r ,
and p ∨ ¬r . Resolution on the first two gives ¬p ∨ ¬r . Res-
olution on this and the third assumption gives ¬r , as desired.
33. Assume that this proposition is satisfiable. Using resolu-
tion on the first two clauses enables us to conclude q ∨ q; in
other words, we know that q has to be true. Using resolution on
the last two clauses enables us to conclude ¬q ∨¬q; in other

words, we know that¬q has to be true. This is a contradiction.
So this proposition is not satisfiable. 35. Valid

Section 1.7

1. Let n = 2k + 1 and m = 2l + 1 be odd inte-
gers. Then n+m= 2(k+ l+ 1) is even. 3. Suppose that
n is even. Then n = 2k for some integer k. Therefore,
n2 = (2k)2 = 4k2 = 2(2k2). Because we have written n2

as 2 times an integer, we conclude that n2 is even. 5. Direct
proof: Suppose that m+n and n+p are even. Then m+n = 2s

for some integer s and n + p = 2t for some integer t . If we
add these, we get m+p+2n = 2s+2t . Subtracting 2n from
both sides and factoring, we have m + p = 2s + 2t − 2n =
2(s + t − n). Because we have written m + p as 2 times
an integer, we conclude that m + p is even. 7. Because n

is odd, we can write n = 2k + 1 for some integer k. Then
(k+1)2−k2 = k2+2k+1−k2 = 2k+1 = n. 9. Suppose
that r is rational and i is irrational and s = r + i is rational.
Then by Example 7, s+(−r) = i is rational, which is a contra-
diction. 11. Because

√
2 ·√2 = 2 is rational and

√
2 is irra-

tional, the product of two irrational numbers is not necessarily
irrational. 13. Proof by contraposition: If 1/x were rational,
then by definition 1/x = p/q for some integers p and q with
q �= 0. Because 1/x cannot be 0 (if it were, then we’d have
the contradiction 1 = x ·0 by multiplying both sides by x), we
know that p �= 0. Now x = 1/(1/x) = 1/(p/q) = q/p by the
usual rules of algebra and arithmetic. Hence, x can be written
as the quotient of two integers with the denominator nonzero.
Thus by definition, x is rational. 15. Assume that it is not
true that x ≥ 1 or y ≥ 1. Then x < 1 and y < 1. Adding these
two inequalities, we obtain x + y < 2, which is the negation
of x+y ≥ 2. 17. a) Assume that n is odd, so n = 2k+1 for
some integer k. Then n3+5 = 2(4k3+6k2+3k+3). Because
n3 + 5 is two times some integer, it is even. b) Suppose that
n3 + 5 is odd and n is odd. Because n is odd and the prod-
uct of two odd numbers is odd, it follows that n2 is odd and
then that n3 is odd. But then 5 = (n3 + 5) − n3 would have
to be even because it is the difference of two odd numbers.
Therefore, the supposition that n3 + 5 and n were both odd is
wrong. 19. The proposition is vacuously true because 0 is
not a positive integer. Vacuous proof. 21. P(1) is true be-
cause (a + b)1 = a + b ≥ a1 + b1 = a + b. Direct proof.
23. If we chose 9 or fewer days on each day of the week, this
would account for at most 9 · 7 = 63 days. But we chose 64
days. This contradiction shows that at least 10 of the days we
chose must be on the same day of the week. 25. Suppose by
way of contradiction that a/b is a rational root, where a and b

are integers and this fraction is in lowest terms (that is, a and
b have no common divisor greater than 1). Plug this proposed
root into the equation to obtain a3/b3 + a/b + 1 = 0. Mul-
tiply through by b3 to obtain a3 + ab2 + b3 = 0. If a and b

are both odd, then the left-hand side is the sum of three odd
numbers and therefore must be odd. If a is odd and b is even,
then the left-hand side is odd + even + even, which is again
odd. Similarly, if a is even and b is odd, then the left-hand
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side is even + even + odd, which is again odd. Because the
fraction a/b is in simplest terms, it cannot happen that both
a and b are even. Thus in all cases, the left-hand side is odd,
and therefore cannot equal 0. This contradiction shows that
no such root exists. 27. First, assume that n is odd, so that
n = 2k+1 for some integer k. Then 5n+6 = 5(2k+1)+6 =
10k + 11 = 2(5k + 5) + 1. Hence, 5n + 6 is odd. To prove
the converse, suppose that n is even, so that n = 2k for some
integer k. Then 5n+ 6 = 10k + 6 = 2(5k + 3), so 5n+ 6 is
even. Hence, n is odd if and only if 5n+ 6 is odd. 29. This
proposition is true. Suppose that m is neither 1 nor −1. Then
mn has a factor m larger than 1. On the other hand, mn = 1,
and 1 has no such factor. Hence, m = 1 or m = −1. In the
first case n = 1, and in the second case n = −1, because
n = 1/m. 31. We prove that all these are equivalent to x

being even. If x is even, then x = 2k for some integer k. There-
fore 3x+2 = 3 ·2k+2 = 6k+2 = 2(3k+1), which is even,
because it has been written in the form 2t , where t = 3k + 1.
Similarly, x + 5 = 2k + 5 = 2k + 4 + 1 = 2(k + 2) + 1,
so x + 5 is odd; and x2 = (2k)2 = 2(2k2), so x2

is even. For the converses, we will use a proof by contra-
position. So assume that x is not even; thus x is odd and
we can write x = 2k + 1 for some integer k. Then
3x+2 = 3(2k+1)+2 = 6k+5 = 2(3k+2)+1, which is odd
(i.e., not even), because it has been written in the form 2t + 1,
where t = 3k+ 2. Similarly, x + 5 = 2k+ 1+ 5 = 2(k+ 3),
so x + 5 is even (i.e., not odd). That x2 is odd was already
proved in Example 1. 33. We give proofs by contraposition
of (i ) → (ii), (ii) → (i ), (i ) → (iii ), and (iii ) → (i ).
For the first of these, suppose that 3x + 2 is rational, namely,
equal to p/q for some integers p and q with q �= 0. Then we
can write x = ((p/q) − 2)/3 = (p − 2q)/(3q), where
3q �= 0. This shows that x is rational. For the second condi-
tional statement, suppose that x is rational, namely, equal to
p/q for some integers p and q with q �= 0. Then we can write
3x+2 = (3p+2q)/q, where q �= 0. This shows that 3x+2 is
rational. For the third conditional statement, suppose that x/2
is rational, namely, equal to p/q for some integers p and q

with q �= 0. Then we can write x = 2p/q, where q �= 0. This
shows that x is rational. And for the fourth conditional state-
ment, suppose that x is rational, namely, equal to p/q for some
integers p and q with q �= 0. Then we can write x/2= p/(2q),
where 2q �= 0. This shows that x/2 is rational. 35. No
37. Suppose that p1 → p4 → p2 → p5 → p3 → p1. To
prove that one of these propositions implies any of the others,
just use hypothetical syllogism repeatedly. 39. We will give
a proof by contradiction. Suppose that a1, a2, . . . , an are all
less than A, where A is the average of these numbers. Then
a1 + a2 + · · · + an < nA. Dividing both sides by n shows
that A = (a1 + a2 + · · · + an)/n < A, which is a contradic-
tion. 41. We will show that the four statements are equiv-
alent by showing that (i ) implies (ii ), (ii ) implies (iii ), (iii )
implies (iv), and (iv) implies (i). First, assume that n is even.
Then n = 2k for some integer k. Then n + 1 = 2k + 1, so
n + 1 is odd. This shows that (i) implies (ii ). Next, suppose
that n + 1 is odd, so n + 1 = 2k + 1 for some integer k.
Then 3n + 1 = 2n + (n + 1) = 2(n + k) + 1, which

shows that 3n+1 is odd, showing that (ii ) implies (iii ). Next,
suppose that 3n + 1 is odd, so 3n + 1 = 2k + 1 for some
integer k. Then 3n = (2k + 1) − 1 = 2k, so 3n is even.
This shows that (iii ) implies (iv). Finally, suppose that n is
not even. Then n is odd, so n = 2k + 1 for some integer k.
Then 3n = 3(2k+1) = 6k+3 = 2(3k+1)+1, so 3n is odd.
This completes a proof by contraposition that (iv) implies (i).

Section 1.8

1. 12 + 1 = 2 ≥ 2 = 21; 22 + 1 = 5 ≥ 4 = 22; 32 + 1 =
10 ≥ 8 = 23; 42 + 1 = 17 ≥ 16 = 24 3. If x ≤ y,
then max(x, y) + min(x, y) = y + x = x + y. If x ≥ y,
then max(x, y) + min(x, y) = x + y. Because these are
the only two cases, the equality always holds. 5. Because
|x − y| = |y − x|, the values of x and y are interchange-
able. Therefore, without loss of generality, we can assume that
x ≥ y. Then (x + y − (x − y))/2 = (x + y − x + y)/2 =
2y/2 = y = min(x, y). Similarly, (x + y + (x − y))/2 =
(x + y + x − y)/2 = 2x/2 = x = max(x, y).
7. There are four cases. Case 1: x ≥ 0 and y ≥ 0. Then
|x| + |y| = x + y = |x + y|. Case 2: x < 0 and y < 0.
Then |x| + |y| = −x + (−y) = −(x + y) = |x + y| because
x+y < 0. Case 3: x ≥ 0 and y < 0. Then |x|+|y| = x+(−y).
If x ≥ −y, then |x+y| = x+y. But because y < 0,−y > y,
so |x| + |y| = x+ (−y) > x+ y = |x+ y|. If x < −y, then
|x+y| = −(x+y)= −x+(−y). But because x ≥ 0, x ≥ −x,
so |x|+|y| = x+ (−y)≥−x+ (−y)= |x+y|. Case 4: x < 0
and y ≥ 0. Identical to Case 3 with the roles of x and y re-
versed. 9. 10,001, 10,002, . . . , 10,100 are all nonsquares,
because 1002 = 10,000 and 1012 = 10,201; constructive.
11. 8 = 23 and 9 = 32 13. Let x = 2 and y = √

2. If
xy = 2

√
2 is irrational, we are done. If not, then letx = 2

√
2 and

y =√2/4. Then xy = (2
√

2)
√

2/4 = 2
√

2·(√2)/4 = 21/2 =√2.
15. a) This statement asserts the existence of x with a certain
property. If we let y = x, then we see that P(x) is true. If y

is anything other than x, then P(x) is not true. Thus, x is the
unique element that makes P true. b) The first clause here
says that there is an element that makes P true. The second
clause says that whenever two elements both make P true,
they are in fact the same element. Together these say that P

is satisfied by exactly one element. c) This statement asserts
the existence of an x that makes P true and has the further
property that whenever we find an element that makes P true,
that element is x. In other words, x is the unique element that
makes P true. 17. The equation |a − c| = |b− c| is equiv-
alent to the disjunction of two equations: a − c = b − c or
a − c = −b + c. The first of these is equivalent to a = b,
which contradicts the assumptions made in this problem, so
the original equation is equivalent to a − c = −b + c. By
adding b+ c to both sides and dividing by 2, we see that this
equation is equivalent to c = (a + b)/2. Thus, there is a
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unique solution. Furthermore, this c is an integer, because the
sum of the odd integers a and b is even. 19. We are being
asked to solve n = (k − 2) + (k + 3) for k. Using the usual,
reversible, rules of algebra, we see that this equation is equiv-
alent to k = (n − 1)/2. In other words, this is the one and
only value of k that makes our equation true. Because n is odd,
n− 1 is even, so k is an integer. 21. If x is itself an integer,
then we can take n = x and ε = 0. No other solution is
possible in this case, because if the integer n is greater than x,
then n is at least x + 1, which would make ε ≥ 1. If x is not
an integer, then round it up to the next integer, and call that
integer n. Let ε = n − x. Clearly 0 ≤ ε < 1; this is the
only ε that will work with this n, and n cannot be any larger,
because ε is constrained to be less than 1. 23. The harmonic
mean of distinct positive real numbers x and y is always less
than their geometric mean. To prove 2xy/(x + y) <

√
xy,

multiply both sides by (x + y)/(2
√

xy) to obtain the equiv-
alent inequality

√
xy < (x + y)/2, which is proved in Ex-

ample 14. 25. The parity (oddness or evenness) of the sum
of the numbers written on the board never changes, because
j + k and |j − k| have the same parity (and at each step we
reduce the sum by j + k but increase it by |j − k|). There-
fore the integer at the end of the process must have the same
parity as 1 + 2 + · · · + (2n) = n(2n + 1), which is odd
because n is odd. 27. Without loss of generality we can as-
sume that n is nonnegative, because the fourth power of an
integer and the fourth power of its negative are the same. We
divide an arbitrary positive integer n by 10, obtaining a quo-
tient k and remainder l, whence n = 10k + l, and l is an
integer between 0 and 9, inclusive. Then we compute n4 in
each of these 10 cases. We get the following values, where X

is some integer that is a multiple of 10, whose exact value we
do not care about. (10k + 0)4 = 10,000k4 = 10,000k4 + 0,
(10k + 1)4 = 10,000k4 + X · k3 + X · k2 + X · k + 1,
(10k + 2)4 = 10,000k4 + X · k3 + X · k2 + X · k + 16,
(10k + 3)4 = 10,000k4 + X · k3 + X · k2 + X · k + 81,
(10k + 4)4 = 10,000k4 + X · k3 + X · k2 + X · k + 256,
(10k + 5)4 = 10,000k4 + X · k3 + X · k2 + X · k + 625,
(10k + 6)4 = 10,000k4 + X · k3 + X · k2 + X · k + 1296,
(10k + 7)4 = 10,000k4 + X · k3 + X · k2 + X · k + 2401,
(10k + 8)4 = 10,000k4 + X ·k3 + X · k2 + X · k + 4096,
(10k + 9)4 = 10,000k4 + X · k3 + X · k2 + X · k + 6561.
Because each coefficient indicated by X is a multiple of 10,
the corresponding term has no effect on the ones digit of the
answer. Therefore the ones digits are 0, 1, 6, 1, 6, 5, 6, 1, 6,
1, respectively, so it is always a 0, 1, 5, or 6. 29. Because
n3 > 100 for all n > 4, we need only note that n = 1,
n = 2, n = 3, and n = 4 do not satisfy n2 + n3 = 100.
31. Because 54 = 625, both x and y must be less than 5.
Then x4 + y4 ≤ 44 + 44 = 512 < 625. 33. If it is not
true that a ≤ 3

√
n, b ≤ 3

√
n, or c ≤ 3

√
n, then a > 3

√
n,

b > 3
√

n, and c > 3
√

n. Multiplying these inequalities of
positive numbers together we obtain abc < ( 3

√
n)3 = n,

which implies the negation of our hypothesis that n = abc.
35. By finding a common denominator, we can assume that
the given rational numbers are a/b and c/b, where b is a pos-

itive integer and a and c are integers with a < c. In particular,
(a+ 1)/b ≤ c/b. Thus, x = (a+ 1

2

√
2)/b is between the two

given rational numbers, because 0 <
√

2 < 2. Furthermore, x
is irrational, because if x were rational, then 2(bx− a) = √2
would be as well, in violation of Example 10 in Section 1.7.
37. a) Without loss of generality, we can assume that the x

sequence is already sorted into nondecreasing order, because
we can relabel the indices. There are only a finite number of
possible orderings for the y sequence, so if we can show that
we can increase the sum (or at least keep it the same) when-
ever we find yi and yj that are out of order (i.e., i < j but
yi > yj ) by switching them, then we will have shown that
the sum is largest when the y sequence is in nondecreasing
order. Indeed, if we perform the swap, then we have added
xiyj + xjyi to the sum and subtracted xiyi + xjyj . The
net effect is to have added xiyj + xjyi − xiyi − xjyj =
(xj − xi)(yi − yj ), which is nonnegative by our ordering as-
sumptions. b) Similar to part (a) 39. a) 6 → 3 → 10 →
5 → 16 → 8 → 4 → 2 → 1 b) 7 → 22 → 11 → 34 →
17 → 52 → 26 → 13 → 40 → 20 → 10 → 5 → 16 →
8 → 4 → 2 → 1 c) 17 → 52 → 26 → 13 → 40 →
20 →10 → 5 → 16 → 8 → 4 → 2 → 1
d) 21 → 64 →32 → 16 → 8 → 4 → 2 → 1 41. Without
loss of generality, assume that the upper left and upper right
corners of the board are removed. Place three dominoes hor-
izontally to fill the remaining portion of the first row, and fill
each of the other seven rows with four horizontal dominoes.
43. Because there is an even number of squares in all, either
there is an even number of squares in each row or there is an
even number of squares in each column. In the former case,
tile the board in the obvious way by placing the dominoes hor-
izontally, and in the latter case, tile the board in the obvious
way by placing the dominoes vertically. 45. We can rotate
the board if necessary to make the removed squares be 1 and
16. Square 2 must be covered by a domino. If that domino is
placed to cover squares 2 and 6, then the following domino
placements are forced in succession: 5-9, 13-14, and 10-11,
at which point there is no way to cover square 15. Otherwise,
square 2 must be covered by a domino placed at 2-3. Then
the following domino placements are forced: 4-8, 11-12, 6-7,
5-9, and 10-14, and again there is no way to cover square 15.
47. Remove the two black squares adjacent to a white corner,
and remove two white squares other than that corner. Then no
domino can cover that white corner.

49. a)

(1) (2) (3) (4) (5)


