Name:_______
ID:_____

ECS 20: Discrete Mathematics Midterm February 26, 2019

Notes:

- 1) Midterm is open book, open notes. No computers though...
- 2) You have 45 minutes, no more: We will strictly enforce this.
- 3) You can answer directly on these sheets (preferred), or on loose paper.
- 4) Please write your name at the top right of at least the first page that you turn in!
- 5) Please, check your work!

Part I: Proofs (1 question, 10 points)

Let a and b be two real numbers, with $a \neq 0$ and $b \neq 0$. Use a proof by contradiction to show

that if ab > 0, then $\frac{a}{b} + \frac{b}{a} \ge 2$.

Part II: sets (2 questions, each 10 points; total: 20 points)

1) Let *A*, *B*, and *C* be three sets in a domain *D*. Consider the following possible two equalities, $(A \cap B) - C = (A - C) \cap (B - C)$ and $C - (A \cap B) = (C - A) \cap (C - B)$. Show that one of these equalities is always true, but the other can be false (for the latter, give an example).

N	a	m	е	•
	~~		-	

ID:

2) Let A, B, and C be three sets in a domain D. We assume that $A - C \subset B$. Let x be an element of the domain D. Show that if $x \in A - B$ then $x \in C$ (*hint:* use a proof by contradiction)

Part III: functions (2 questions; each 10 points; total 20 points)

1) Let <i>n</i> and <i>m</i> be two <i>integers</i> . Show that	n+m		n-m+1	$ _{=n}$
1) Let <i>n</i> and <i>m</i> be two imegers . Show that	2	Т	2	- 11

2) Let *x* be a real number and *n* a natural number. Show that
$$\left\lfloor \frac{x+1}{n} \right\rfloor = \left\lfloor \frac{\lfloor x \rfloor + 1}{n} \right\rfloor$$

Part III: Proofs (1 questions; 10 points)

Prove that $\{p \mid p \text{ is a prime number}\} \cap \{k^2 - 1 \mid k \in N\} = \{3\}$

Name:______ ID:_____

Part IV: extra credit (3 points)

Let x be a real number. Solve $\frac{x-1}{2} = \left\lfloor \frac{x}{2} \right\rfloor - \left\lfloor \frac{x+1}{2} \right\rfloor$.