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Exercise 1: 10 points
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Exercise 2: 10 points
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Exercise 3: 10 points
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Exercise 4: 10 points

Show that Vn € N,n > 3,n? — 7n + 12 > 0.

Exercise 5: 10 points
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Show that Vn € N,n > 1, a set S,, with n elements has 2> subsets that contain exactly two

elements.

Exercise 6: 10 points

Find the flaw with the following proof that : P(n) : @ = 1 for all non negative integer n, whenever
a is a non zero real number:

e Basis step: P(0) is true: a’ = 1 is true, by definition of a”



e Strong Inductive step: assume that o/ = 1 for all non negative integers j with j < k. Then
note that:

Therefore P(k + 1) is true.

The principle of proof by strong mathematical induction allows us to conclude that P(n) is true
for all n > 0.

Exercise 7: 10 points

Show that ¥n € N, 21 divides 4"+ 4 5271,

Exercise 8: 10 points

Show that Vn € NfZ + f2 + ...+ f2 = f,fn+1 where f,, are the Fibonacci numbers.

Exercise 9: 10 points

Show that Vn € Nfo— f1+ fo — ... — fon—1+ fon = fon—1 — 1 where f,, are the Fibonacci numbers.

Extra Credit: 5 points
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Show that Vn € N,n > 1, a set .S;, with n elements has
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6

three elements.



