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Exercise 1

Show that Vn € N, Y i = <”(”Q+>> .
=1

n 1 2 n
Let P(n) be the proposition: Zz’3 = <n(n+)> . Let us also define LHS(n) = Zz’?’ and
i=1
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s = (20 0Y

e Basis step: P(1) is true:

1
LHS(1) = Y i#=1

s = (12 -2

s
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e Inductive step: Let k be a positive integer (k < 0), and let us suppose that P(k) is true. We
want to show that P(k + 1) is true.
k+1
Let us compute LHS(k+ 1) = Z i3
i=1



k
LHS(k+1) = > i+ (k+1)°
=1

— <k(k2+1)>2+(k+1)3
= ]f(k+1)2+(k+1)(k+1)2
= W(kJrl)Q

U s

_ ((k+1)2(k+2)>2

And:

RHS(k+1) = <(k - 1)2(k - 2)>2

Therefore LHS(k + 1) = RHS(k + 1), which validates that P(k + 1) is true.

The principle of proof by mathematical induction allows us to conclude that P(n) is true for all n.

Exercise 2

Show that Vn € N,Zi(i +1)(i42) = n(n+ 1)(”4+ 2)(n+ 3).
i=1

n(n+1)(n+2)(n+ 3)

n
Let P(n) be the proposition: Z i(i+1)(i+2) = 1

i=1

. We define LHS(n) =

n

Zi(i +1)(i +2) and RHS(n) = n(
=1

n+1)(n+2)(n+3)
4

e Basis step: P(1) is true:

LHS(1) = 1x(1+1)x(1+2)=6

RHS(1) = 1*(1+1)*(1+2)*(1+3)_6

e Inductive step: Let k be a positive integer (k < 0), and let us suppose that P(k) is true. We
want to show that P(k + 1) is true.



Let us compute LHS(k + 1):

k+1
LHS(k+1) = =) i(i+1)(i+2)
=1

— LHS() + (k+ 1)k +2)(k +3)

_ MEEDGHEEY) )

4
 k(k+1)(k+2)(k+3)  4k+1)(k+2)(k+3)
B 4 + 4
_ (B 1)(k+2)(k+3)(k +4)
4

Let us compute RHS(k+ 1):

(k+ 1)(k +2)(k + 3)(k + 4)
4

Therefore LHS(k + 1) = RHS(k + 1), which validates that P(k + 1) is true.

RHS(k+1) =

The principle of proof by mathematical induction allows us to conclude that P(n) is true for
all n.

Exercise 3

n
1 1
Show that Vn € N;n > 1, g 5 <2-—.
i
i=1

n
Let P(n) be the proposition: Zn: L <2- E Let us define LHS(n) = z”: z and RHS(n) =
o ‘ i=1 i2 n - i=1 & -
1
2 — —. We want to show that P(n) is true for all n > 1.
n

e Basis step: We show that P(2) is true:

LHS(2) =1+

DO = | =

RHS(2)=2— - =

Therefore LHS(2) < RHS(2) and P(2) is true.

e Inductive step: Let k be a positive integer greater than 1 (k > 1), and let us suppose that
P(k) is true. We want to show that P(k + 1) is true.

LHS(k+1)= LHS(k) + CESE



Since P(k) is true, we find:

1 1
LHSk+1)<2— -
Sk+1) < k+(k+1)2

1 1

i kE+1>k .
Since k 4+ 1 > ’(k+1)2<k(k:+1)

Therefore

1 1
LHS(k+1 2— =4+ —
Sk+1) < 2=+ 1+
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We can use the property : m =7 m:

1 1
LH 1 94—
Sk+1) < k+k: P
1
LHS(k+1 9
(k+1) < k1
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Since RHS(k+1) = 2 —
P(k+1) is true.

1
el e get LHS(k + 1) < RHS(k + 1) which validates that

The principle of proof by mathematical induction allows us to conclude that P(n) is true for all
n > 1.

Exercise 4

Show that Vn € N,n > 3,n? — 7Tn + 12 > 0.

Let P(n) be the proposition: n? —7n+12 > 0. We want to show that P(n) is true for n greater
than 3. Let us define LHS(n) = n? — Tn + 12.
Notice that LHS(1) =6, LHS(2) = 2 and LHS(3) = 0 hence P(1), P(2) and P(3) are true.

e Basis step: P(4) is true:
LHS(4) =4 —7%4+12=0
Therefore LHS(4) > 0 and P(4) is true.

e Inductive step: Let k be a positive integer greater than 3 (k > 3), and let us suppose that
P(k) is true. We want to show that P(k + 1) is true.

LHS(k+1) = (k+1)?—7(k+1)+12
= K +2k+1-Tk—7+12
(K> — Tk + 12) + (2k — 6)
Since P(k) is true, we know that k? — 7k + 12 > 0. Since k > 4, 2k — 6 > 0. Therefore,

(k+1)2=7(k+1)+12 > 0.
This validates that P(k + 1) is true.



The principle of proof by mathematical induction allows us to conclude that P(n) is true for all
n > 3.

Exercise 5

n(n —1
Show that Vn € N,n > 1, a set S,, with n elements has (2) subsets that contain exactly two

elements.

subsets that contain

n(n —1)
2

Let P(n) be the proposition: A set S, with n elements has

exactly two elements.
We want to show that P(n) is true for all n > 2; we use a proof by induction.

e Basis step: P(2) is true: As the set Sy contains 2 elements, there is only one subset that
containing exactly two elements, and n(n —1)/2 = 1.

e Inductive step: Let k be a positive integer greater or equal to 2 (k > 2), and let us suppose
that P(k) is true. We want to show that P(k + 1) is true.
Let us consider a set Sgiq of k+ 1 elements: Sky1 = {a1,a9,...,ak,arr1}. Let Si be the set
with the first k& elements of Si11: S = {a1,...,ar}. Since P(k) is true, there are k(k —1)/2
subsets of Sy, that contain exactly two elements.
The (k+ 1)th element of Sk11 ar41 can pair with each of the elements of Si to build a subset
of Si41 of exactly two elements. These new subsets do not duplicate with any of the k(k—1)/2
subsets of Sy because the (k + 1)th element does not appear in any of these subsets. There
are no other two-element subsets.
Therefore, the total number of two-element subsets of Sk is: k(k—1)/2+k = (k(k —1) +
2k)/2=k(k+1)/2=(k+1)((k+ 1) —1)/2. This validates that P(k + 1) is true.

The principle of proof by mathematical induction allows us to conclude that P(n) is true for all
n > 2.

Exercise 6

Find the flaw with the following proof that : P(n) : @ = 1 for all non negative integer n, whenever
a is a non zero real number:

e Basis step: P(0) is true: a’ = 1 is true, by definition of a”

o Strong Inductive step: assume that a/ = 1 for all non negative integers j with j < k. Then
note that:

Therefore P(k + 1) is true.

The principle of proof by strong mathematical induction allows us to conclude that P(n) is true
for all n > 0.



This is again a case in which if we are not careful, we can prove nearly every thing! In the proof
given:

e the basis step is correct: by definition we indeed have a® = 1.

e Inductive step: the assumption should really be written:
assume that a/ = 1, for all integers j with 0 < j < k. When we write a**1 = Z:—??, we need
to use the premise for j = k and j =k — 1. But for k =0, k — 1 < 0, and we are outside the
limit of validity. This means that we can show P(k) — P(k + 1) only for k£ > 0. This is not
enough to apply the method of proof by induction!

Exercise 7

Show that Vn € N, 21 divides 4"+ + 5271,
Let P(n) be the proposition: 21 divides 4"*! + 52"~ We want to show that P(n) is true for
all n; we use a proof by induction.

e Basis step: P(1) is true: when n = 1, 4”1 4 52n=1 = 16 4 5 = 21 is divisible by 21.

e Inductive step: Let k be a positive integer, and let us suppose that P(k) is true. We want to
show that P(k + 1) is true.

gD L g2(k+D)=1 g gkl 4 52, 52k—1
= 45 4Pl o5 5 521
— 4(4]{:+1 + 52k—1) + 21 * 52k—1

Because 4511 4+ 5261 and 21 % 525=1 both are divisible by 21, 4(k+D+1 4 52(k+1)-1 jg 5150
divisible by 21: P(k + 1) is true.

The principle of proof by mathematical induction allows us to conclude that P(n) is true for all
n > 0.

Exercise 8

Show that Vn € NfZ + f2 + ...+ f2 = fufar1 where f, are the Fibonacci numbers.

Let P(n) be the proposition: fZ+ f2 4+ ...+ f2 = fufns1
where f,, are the Fibonacci numbers. Let us define LHS(n) = f2 + f2 + ...+ f2 and RHS(n) =

fnfn-i-l'

We want to show that P(n) is true for all n; we use a proof by induction.
e Basis step: P(1) is true:

LHS(2) = fi=1*=1
RHS(2) = fifo=1



e Inductive step: Let k be a positive integer, and let us suppose that P(k) is true. We want to
show that P(k+ 1) is true.

Then
LHS(k+1) = fi+fi+..+ 7+
= fefes1 + fen
= frr1(fi + fit1)
= fre+1Srr2
and

RHS(k+1) = fes1frro
Therefore LHS(k + 1) = RHS(k + 1), which validates that P(k + 1) is true.

The principle of proof by mathematical induction allows us to conclude that P(n) is true for all n.

Exercise 9

Show that Vn € Nfy— fi+ fo—...— fon_1+ fon = fon—1 — 1 where f,, are the Fibonacci numbers.
Let P(n) be the proposition: fo — f1 + fo— ... — fon—1 + fon = fon—1 — 1
where f,, are the Fibonacci numbers. Let us define LHS(n) = fo — fi+ fo— ... — fon—1 + fon and

RHS(?’L) = f2n—1 — 1.
We want to show that P(n) is true for all n > 0; we use a proof by induction.

e Basis step:

LHS(1)=fo—fi+fo=0—-1+1=0
RHS(1)=fi—1=1-1=0

Therefore LHS(1) = RHS(1) and P(1) is true.

e Inductive step: Let k be a positive integer, and let us suppose that P(k) is true. We want to
show that P(k+ 1) is true.

Then
LHS(k+1) = fo—fi+...— fok—1 + for — for+1 + forto
= fop—1 — 1 — fory1 + fort2
= fog—1 — 1 — fors1 + (for + for+1)
= fop—1+ foar—1
= fopy1—1
and

RHS(k+1) = fopt1 —1
Therefore LHS(k + 1) = RHS(k + 1), which validates that P(k + 1) is true.

The principle of proof by mathematical induction allows us to conclude that P(n) is true for all n.



Extra Credit

Show that Vn € N,n > 1, a set S,, with n elements has

subsets that contain exactly

nn—1)(n—2)
6

three elements.

n(n—1)(n—2)
6

subsets that contain

Let P(n) be the proposition: A set .S,, with n elements has

exactly three elements.
We want to show that P(n) is true for all n > 3; we use a proof by induction.

e Basis step: P(3) is true: In a set S3 of 3 elements, there is only one subset that containing
exactly three elements, and (3(3 —1)(3 —2))/6 = 1.

e Inductive step: Let k be a positive integer greater or equal to 3 (k > 3), and let us suppose
that P(k) is true. We want to show that P(k + 1) is true.
Let Sgy1 = {ai,a2,...,ax41} be a set of k + 1 elements, and let Sy be its subset Sy =
{al, ag, ... ,ak}.
S). contains k elements: since P(k) is true, it contains k(k—1)(k—2)/6 three-element subsets.
In addition, based on exercise 7, it also contains k(k — 1)/2 two-element subsets.
The subsets of Sp41 that contain 3 elements are the subsets of 3 elements of S, plus the
subsets of 3 elements containing a4 1.
ap+1 can pair with each of the two-element subsets of Si in order to form a subset of exact
three elements of Sii1. These new subsets do not duplicate with any of the other three-
element subsets because a(k + 1) does not appear in any of these subsets. There are no other
three-element subsets.
Therefore, the total number N3 of three-element subsets of Siy1 is:

k(k—1)(k—2)  k(k—1)

Vs = 6 T
_ k(= 1)[(k—2) +3]
6
(kDR —1)
B 6
_ DR+ - D((k+1) - 2)
6

This validates that P(k + 1) is true.

The principle of proof by mathematical induction allows us to conclude that P(n) is true for all
n > 2.



