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Exercise 1 (5 points)

Let a, b, and c be three propositions. Show that this implication is a tautology, using a truth table:

(a ∨ b) ∧ (¬a ∨ c)→ (b ∨ c)

Let A = (a ∨ b) ∧ (¬a ∨ c)→ (b ∨ c). The truth table for the values of A is:

a b c a ∨ b ¬a ∨ c (a ∨ b) ∧ (¬a ∨ c) b ∨ c A

T T T T T T T T
T T F T F F T T
T F T T T T T T
T F F T F F F T
F T T T T T T T
F T F T T T T T
F F T F T F T T
F F F F T F F T

A is always true, independent of the values of a, b, and c: it is a tautology.

Exercise 2 (5 points)

Let p, q, and r be three propositions. Show that (p∨ q)→ r and (p→ r)∨ (q → r) are not logically
equivalent.

Let A = (p ∨ q)→ r and B = (p→ r) ∨ (q → r). Let us compare the truth values of A and B.
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p q r p ∨ q A p→ r p→ r B

T T T T T T T T
T T F T F F F F
T F T T T T T T
T F F T F F T T
F T T T T T T T
F T F T F T F T
F F T F T T T T
F F F F T T T T

A and B do not always share the same truth values: they are not logically equivalent.

Exercise 3 (5 points each; total 20 points)

Determine the truth values of the following statements; justify your answers:

a) ∀n ∈ N, n < (n + 2)

The statement is True. Let us prove it.

Let n be a natural number. Let us define A = n and B = n + 2. We notice that A − B =
n − (n + 2) = −2 < 0. Therefore, A < B, i.e. n < (n + 2). As this is true for all n, the
statement is true.

b) ∃n ∈ N, 2n = 3n

The statement is False. Let us prove it.

Let us solve first 2n = 3n where n is an integer. We find 2n− 3n = 0, i.e. n = 0. Therefore,
the equation 2n = 3n is only true for n = 0. However, 0 does not belong to N. We can
conclude that ∀n ∈ N, 2n 6= 3n; the property is false.

c) ∀n ∈ Z, 3n ≤ 4n

The statement is False. Let us prove it.

Let n be an integer. 3n ≤ 4n is equivalent to 0 ≤ n. This means that ∀n < 0, 3n > 4n.
Therefore, we can find n ∈ Z such that 3n > 4n (for example n = −1). The statement is
false.

d) ∃x ∈ R, x3 < x2

The statement is True. Let us prove it.

Notice that the statement is based on existence: we only need to find one example. if x = −1.
x2 = 1 and x3 = −1, in which case x3 < x2.

Exercise 4 (5 points each; total 25 points)

Show that the following statements are true.
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a) Let x be a real number. Prove that if x2 is irrational, then x is irrational.

Proof: Let x be a real number. We define the two statements: P (x) : x2 is irrational, and
Q(x) : x is irrational. We want to show P (x)→ Q(x). We will prove instead its contrapositive:
¬Q(x)→ ¬P (x), where ¬Q(x) : x is rational, and ¬P (x) : x2 is rational.

Hypothesis: ¬Q(x) is true, namely x is rational. By definition, there exists two integers a
and b, with b 6= 0, such that x = a

b . Then,

x2 =
a2

b2

Since a is an integer, a2 is an integer. Similarly, since b is a non-zero integer, b2 is a non zero
integer. Therefore x2 is rational, which concludes the proof.

b) Let x be a positive real number. Prove that if x is irrational, then
√
x is irrational.

Proof: Let x be a real number. We define the two statements: P (x) : x is irrational,
and Q(x) :

√
x is irrational. We want to show P (x) → Q(x). We will prove instead its

contrapositive: ¬Q(x)→ ¬P (x), where ¬Q(x) :
√
x is rational, and ¬P (x) : x is rational.

Hypothesis: ¬Q(x) is true, namely
√
x is rational. By definition, there exists two integers a

and b, with b 6= 0, such that
√
x = a

b . Then,

x =
a2

b2

Since a is an integer, a2 is an integer. Similarly, since b is a non-zero integer, b2 is a non zero
integer. Therefore x is rational, which concludes the proof.

c) Prove or disprove that if a and b are two rational numbers, then ab is also a rational number.

The property is in fact not true. Let a = 2 and b = 1
2 . Then ab = 2

1
2 =

√
2; but we have

shown in class that
√

2 is irrational.

d) let n be a natural number. Show that n is even if and only if 5n + 12 is even.

Proof. Let n be a natural number and let P (n) and Q(n) be the propositions n is even, and
5n + 12 is even, respectively. We will show that P (n)→ Q(n) and Q(n)→ P (n).

i) P (n)→ Q(n)

Hypothesis: n is even. By definition of even numbers, there exists and integer k such
that n = 2k. Then,

5n + 12 = 10k + 12 = 2(5k + 6)

Since 5k + 6 is an integer, 5n+ 12 can be written in the form 2k′, where k′ is an integer;
therefore, 5n + 12 is even.

ii) Q(n)→ P (n)

We will show instead its contrapositive, namely ¬P (n) → ¬Q(n), where ¬P (n) : n is
odd, and ¬Q(n) : 5n + 12 is odd.

Hypothesis: n is odd. By definition of even numbers, there exists and integer k such
that n = 2k + 1. Then,

5n + 12 = 10k + 5 + 12 = 2(5k + 8) + 1

Since 5k + 8 is an integer, 5n + 12 can be written in the form 2k′ + 1, where k′ is an
integer; therefore, 5n + 12 is odd.
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e) Prove that either 4 × 10769 + 22 or 4 × 10769 + 23 is not a perfect square. Is your prove
constructive, or non-constructive?

Let n = 4× 10769 + 22. The two numbers are n and n + 1.

Proof by contradiction: Let us suppose that both n and n + 1 are perfect squares:

∃k ∈ Z, k2 = n

∃l ∈ Z, l2 = n + 1

Then

l2 = k2 + 1

(l − k)(l + k) = 1

Since l and k are integers, there are only two cases:

– l − k = 1 and l + k = 1, i.e. l = 1 and k = 0. Then we would have k2 = 0, i.e. n = 0:
contradiction

– l − k = −1 and l + k = −1, i.e. l = −1 and k = 0. Again, contradiction.

We can conclude that the proposition is true.

Exercise 5 (10 points)

Let n be a natural number and let a1, a2, . . . , an be a set of n real numbers. Prove that at least
one of these numbers is less than, or equal to the average of these numbers. What kind of proof
did you use?

We use a proof by contradiction.
Suppose none of the real numbers a1, a2, ..., an is less than or equal to the average of these

numbers, denoted by a.
By definition

a =
a1 + a2 + ... + an

n

Our hypothesis is that:

a1 > a

a2 > a

... > ...

an > a

We sum up all these equations and get the following:

a1 + a2 + ... + an > n ∗ a

Replacing a in equation (9) by its value given in equation (4) we get:
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a1 + a2 + ... + an > a1 + a2 + ... + an

This is not possible: a number cannot be strictly smaller than itself: we have reached a contra-
diction. Therefore our hypothesis was wrong, and the original statement was correct.

Exercise 6 (5 points each; total 10 points)

Let n be an integer. Show that if n3 + 9 is even, the n is odd, using:

a) a proof by contraposition

b) a proof by contradiction

Let n be an integer. We define P (n) : n3 + 9 is even, and Q(n) : n is odd. We want to prove
that P (n)→ Q(n). We use two different proofs:

a) Proof by contrapositive

We want to show that ¬Q(n)→ ¬P (n).

Hypothesis: ¬Q(n), i.e. n is even. By definition of even numbers, there exists and integer k
such that n = 2k. Then,

n3 + 9 = 10k3 + 9 = 2(5k3 + 4) + 1

Since 5k3 + 4 is an integer, n3 + 9 can be written in the form 2k′ + 1, where k′ is an integer;
therefore, n3 + 9 is odd, i.e. ¬P (n) is true.

a) Proof by contradiction

We suppose that P (n) → Q(n) is false, i.e. that ¬(P (n) → Q(n)) is true, i.e. that P (n) ∧
¬Q(n) is true. This is only the case if P (n) is true and ¬Q(n) is true.

If ¬Q(n) is true, then n is even. By definition of even numbers, there exists and integer k
such that n = 2k. Then,

n3 + 9 = 10k3 + 9 = 2(5k3 + 4) + 1

Since 5k3 + 4 is an integer, n3 + 9 can be written in the form 2k′ + 1, where k′ is an integer;
therefore, n3 + 9 is odd, i.e. ¬P (n) is true. However, we have supposed that P (n) is true: we
have reached a contradiction. The original statement is therefore true.

Extra Credit (5 points)

Use Exercise 5 to show that if the first 12 strictly positive integers are placed around a circle, in
any order, then there exist three integers in consecutive locations around the circle that have a sum
greater than or equal to 20.

Let a1, a2, ..., a12 be an arbitrary order of 12 positive integers from 1 to 12 being placed around
a circle:
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Since the twelve numbers a correspond to the first 12 positive integers, we get:

a1 + a2 + ... + a12 = 1 + 2 + ... + 12 = 78 (1)

Notice that the a1, a2, ..., a12 are not necessarily in the order 1, 2, ..., 12. They do include
however the twelve integers from 1 to 12: these is why the sum is 78

Let us now consider the different sums Si of three consecutive sites around the circle. There
are 12 such sums:

S1 = a1 + a2 + a3

S2 = a2 + a3 + a4

S3 = a3 + a4 + a5

S4 = a4 + a5 + a6

S5 = a5 + a6 + a7

S6 = a6 + a7 + a8

S7 = a7 + a8 + a9

S8 = a8 + a9 + a10

S9 = a9 + a10 + a11

S10 = a10 + a11 + a12

S11 = a11 + a12 + a1

S12 = a12 + a1 + a2

We do not know the values of the individual sums Si; however, we can compute the sum of
these numbers:

S1 + S2 + ... + S12 = (a1 + a2 + a3) + (a2 + a3 + a4) + ... + (a12 + a1 + a2)

= 3 ∗ (a1 + a2 + ... + a12)

= 3 ∗ 78

= 234

The average of S1, S2, ..., S12 is therefore:

S =
S1 + S2 + ... + S12

12

=
234

12
= 19.5

Based on the conclusion of Exercise 5, at least one of S1, S2, ..., S12 is smaller to or equal to S,
i.e., 19.5. Because S1, S2, ..., S12 are all integers, they cannot be equal to 19.5. Thus, at least one
of S1, S2, ..., S12 is smaller to or equal to 19.
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