Discussion 5: Solutions

ECS 20 (Fall 2016)

Patrice Koehl koehl@cs.ucdavis.edu

October 20-26, 2016

Exercise 0: Additional problems on proofs

• a) Let x and y be two integers. Show that if 2x + 5y = 14 and $y \neq 2$, then $x \neq 2$.

We need to prove an implication of the form $p \to q$, where p and q are defined as:

p: 2x + 5y = 14 and $y \neq 2$

 $q: x \neq 2$

We will use a proof by contradiction, namely we will suppose that the property is false, and find that this leads to a contradiction.

Hypothesis: $p \to q$ is false, which is equivalent to saying that p is true, AND q is false.

Therefore, 2x + 5y = 14 and $y \neq 2$ and x = 2. Replacing x by its value in the first equation, we get 4 + 5y = 14, namely y = 2. Therefore we have y = 2 and $y \neq 2$: we have reached a contradiction.

Therefore the hypothesis is false, which means that $p \to q$ is true.

• b) Let x and y be two integers. Show that if $x^2 + y^2$ is odd, then x + y is odd

We need to prove an implication of the form $p \to q$, where p and q are defined as:

 $p: x^2 + y^2$ is odd

q: x + y is odd

We will use an indirect proof, namely instead of showing that $p \to q$, we will show the equivalent property $\not{q} \to \not{p}$, where:

/q: x + y is even

 $p: x^2 + y^2$ is even

Hypothesis: A is true, namely x + y is even. Since x + y is even, $(x + y)^2$ is even (result from class). Therefore there exists an integer k such that $(x + y)^2 = 2k$. We note also that:

$$(x+y)^2 = x^2 + y^2 + 2xy,$$

Therefore,

$$x^2 + y^2 = 2k - 2xy = 2(k - xy)$$

Since k - xy is an integer, we conclude that $x^2 + y^2$ is even, namely that $\not p$ is true. We have shown that $\not q \to \not p$ is true; we can conclude that $p \to q$ is true.

Exercise 1

To show that f is bijective (or not) from \mathbb{R} to \mathbb{R} , we need to check: (i) that it is a function, (ii) that it is one-to-one (injective), and (iii) that it is onto (surjective).

• a) f(x) = 2x + 4

(i) f is a function from \mathbb{R} to \mathbb{R} , as its domain is \mathbb{R}

(ii) Let us show that f is injective. Let x and y be two real numbers such that f(x) = f(y). Then 2x + 4 = 2y + 4, therefore x = y. f is injective.

(iii) Let us show that f is surjective. Let y be an element of the co-domain, \mathbb{R} . To find if there exists a real number x such that f(x) = y, we solve the equation f(x) = y, i.e. 2x + 4 = y. We find $x = \frac{y-4}{2}$, i.e. x exists for each value of y. f is surjective.

We conclude that f is bijective.

- **b**) $f(x) = x^2 + 1$
 - (i) f is a function from \mathbb{R} to \mathbb{R} , as its domain is \mathbb{R}

(ii) Is f injective?. Let x and y be two real numbers such that f(x) = f(y). Then $x^2 + 1 = y^2 + 1$, i.e. $x^2 - y^2 = 0$. This leads to (x - y)(x + y) = 0, therefore x = y or x = -y. For example, f(1) = f(-1): f is not injective; it is therefore not bijective.

• c)
$$f(x) = (x+1)/(x+2)$$

(i) f is not a function from \mathbb{R} to \mathbb{R} , as it is not defined for x = -2. The domain D is $\mathbb{R} - \{-2\}$. It is a function from D to \mathbb{R} . Is it a bijection from D to \mathbb{R} ?

(ii) Let x and y be two real numbers such that f(x) = f(y). Then (x + 1)/(x + 2) = (y+1)/(y+2), i.e. (x+1)(y+2) = (y+1)(x+2). After development, we get 2x + y = 2y + x i.e. x = y. The function is injective.

(iii) Let y be an element of the co-domain, \mathbb{R} . To find if there exists a real number x such that f(x) = y, we solve the equation f(x) = y, i.e. (x + 1)/(x + 2) = y. This becomes x + 1 = y(x + 2), i.e. x(1 - y) = 2y - 1, which has a solution if and only if $y \neq 1$. Therefore we found one element of the co-domain (y = 1) for which we cannot find an element x such that f(x) = y. f is not surjective, therefore f is not bijective.

- d) $f(x) = (x^2 + 1)/(x^2 + 2)$
 - (i) f is a function from \mathbb{R} to \mathbb{R} , as its domain is \mathbb{R}
 - (ii) Is f injective? We note that f(1) = f(-1): f is not injective, therefore f is not bijective.

Exercise 2

Let $S = \{-1, 0, 2, 4, 7\}$. Find f(S) if:

• a). f(x) = 1

Since f(x) = 1 for all elements of S, $f(S) = \{1\}$.

• **b**). f(x) = 2x + 1f(-1) = -1, f(0) = 1, f(2) = 5, f(4) = 9, and f(7) = 15. Therefore $f(S) = \{-1, 1, 5, 9, 15\}$.

- c). $f(x) = \lceil \frac{x}{5} \rceil$ f(-1) = -1, f(0) = 0, f(2) = 0, f(4) = 0, and f(7) = 2. Therefore $f(S) = \{-1, 0, 1\}.$
- **d**). $f(x) = \lceil \frac{x^2 + 1}{3} \rceil$ f(-1) = 0, f(0) = 0, f(2) = 1, f(4) = 5, and f(7) = 16. Therefore $f(S) = \{0, 1, 5, 16\}.$

Exercise 3

Let S be a subset of a universe U. The characteristic function f_S of S is the function from U to the set $\{0,1\}$ such that $f_S(x) = 1$ if x belongs to S and $f_S(x) = 0$ if x does not belong to S. Let A and B be two sets. Show that for all x in U,

• a). $f_{A \cap B}(x) = f_A(x) f_B(x)$

Let x be an element of U. Let us call $LHS(x) = f_{A \cap B}(x)$ and $RHS(x) = f_A(x)f_B(x)$. We distinguish two cases:

(i) $x \in A \cap B$. Then $LHS(x) = f_{A \cap B}(x) = 1$, by definition of $f_{A \cap B}$. Also, since $x \in A \cap B$, then $x \in A$ and $x \in B$, therefore $f_A(x) = 1$ and $f_B(x) = 1$, i.e. RHS(x) = 1.

(ii) $x \notin A \cap B$. Then $LHS(x) = f_{A \cap B}(x) = 0$, by definition of $f_{A \cap B}$. Also, since $x \notin A \cap B$, then $x \notin A$ or $x \notin B$, therefore $f_A(x) = 0$ or $f_B(x) = 0$, i.e. RHS(x) = 0.

The property is therefore true for all x in U.

b). f_{A∪B}(x) = f_A(x) + f_B(x) - f_A(x)f_B(x) Let x be an element of U. Let us call LHS(x) = f_{A∪B}(x) and RHS(x) = f_A(x) + f_B(x) - f_A(x)f_B(x). We distinguish four cases:
(i) x ∈ A and x ∈ B. Then LHS(x) = f_{A∩B}(x) = 1, as x ∈ A∪B. Also, f_A(x) = 1 and f_B(x) = 1, therefore RHS(x) = 1 + 1 - 1 = 1.
(ii) x ∈ A and x ∉ B. Then LHS(x) = f_{A∩B}(x) = 1, as x ∈ A∪B. Also, f_A(x) = 1 and f_B(x) = 0, therefore RHS(x) = 1 + 0 - 0 = 1.
(iii) x ∉ A and x ∈ B. Then LHS(x) = f_{A∩B}(x) = 1, as x ∈ A∪B. Also, f_A(x) = 0 and f_B(x) = 1, therefore RHS(x) = 0 + 1 - 0 = 1.
(iv) x ∉ A and x ∉ B. Then LHS(x) = f_{A∩B}(x) = 0, as x ∉ A∪B. Also, f_A(x) = 0 and f_B(x) = 0, therefore RHS(x) = 0 + 1 - 0 = 1.
(iv) x ∉ A and x ∉ B. Then LHS(x) = f_{A∩B}(x) = 0, as x ∉ A∪B. Also, f_A(x) = 0 and f_B(x) = 0, therefore RHS(x) = 0 + 1 - 0 = 1.

The property is therefore true for all x in U.

Exercise 4

Let *n* be an integer. Show that $\lfloor \frac{n}{2} \rfloor \lceil \frac{n}{2} \rceil = \lfloor \frac{n^2}{4} \rfloor$.

Let n be an integer. We define $LHS(n) = \lfloor \frac{n}{2} \rfloor \lceil \frac{n}{2} \rceil$ and $RHS(n) = \lfloor \frac{n^2}{4} \rfloor$. Since we consider the division of n by 2, we consider two cases:

(i) n is even. Then there exists $k \in \mathbb{Z}$ such that n = 2k. Then:

 $\lfloor \frac{n}{2} \rfloor = k, \lceil \frac{n}{2} \rceil = k$, therefore $LHS(n) = k^2$.

 $n^2 = 4k^2$, therefore $\lfloor \frac{n^2}{4} \rfloor = k^2$, i.e. $RHS(n) = k^2$.

(ii) n is odd. Then there exists $k \in \mathbb{Z}$ such that n = 2k + 1. Then:

 $\frac{n}{2}=k+\frac{1}{2}.$ Then, $\lfloor\frac{n}{2}\rfloor=k,\,\lceil\frac{n}{2}\rceil=k+1,$ therefore $LHS(n)=k^2+k.$

 $n^2 = 4k^2 + 4k + 1$, therefore $\lfloor \frac{n^2}{4} \rfloor = k^2 + k$, i.e. $RHS(n) = k^2 + k$. The property is therefore true for all n in \mathbb{Z} .