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Exercise 1: proofs

=

e a) Let x and y be two integers. Show that if 2z 4+ 5y = 14 and y # 2, then = # 2.
We need to prove an implication of the form p — ¢, where p and g are defined as:
p:2rx+5by=14 and y # 2
q:xF#2

We will use a proof by contradiction, namely we will suppose that the property is false, and
find that this leads to a contradiction.

Hypothesis: p — ¢ is false, which is equivalent to saying that p is true, AND ¢ is false.

Therefore, 2x + 5y = 14 and y # 2 and x = 2. Replacing x by its value in the first equation,
we get 4 + by = 14, namely y = 2. Therefore we have y = 2 and y # 2: we have reached a
contradiction.

Therefore the hypothesis is false, which means that p — ¢ is true.

e b) Let 2 and y be two integers. Show that if 22 4 y? is odd, then x + y is odd
We need to prove an implication of the form p — ¢, where p and g are defined as:
p:a?+1y?%is odd
q:x+yisodd

We will use an indirect proof, namely instead of showing that p — ¢, we will show the
equivalent property —q — —p, where:

-q:x+yis even

—p: 2% + 32 is even

Hypothesis: —q is true, namely x +y is even. Since z +y is even, (x +y)? is even (result from
class). Therefore there exists an integer k such that (z + y)? = 2k. We note also that:
(z+y)* =2 +y* + 2z,

Therefore,



22+ y? =2k — 20y = 2(k — zy)
Since k — zy is an integer, we conclude that 22 + y? is even, namely that —p is true.

We have shown that —g — —p is true; we can conclude that p — ¢ is true.

Exercise 2: floor and ceiling

e a). Let x be a real number. Show that:
3] | _ =
- 13]

Let us define k = L%J and m = L%J By definition of floor, we have the two properties:
k<3 <k+1

and

m< 3 <m+1

Let us multiply the second inequalities by 2:

2m < 5 <2(m+1)

We notice that:

k < g and § < 2(m + 1); therefore k < 2(m +1).

k < § and 2m < 3. Therefore k and 2m are two integers smaller than 5. By definition of

5
floor, k is the largest integer smaller that 5. Therefore 2m < k.

Combining those two inequalities, we get 2m < k < 2(m + 1). After division by 2, m < % <
m + 1. Therefore m is the floor of % Replacing m and k by their values, we get:

SRR

The property is therefore true.

e b). Let n be an odd integer. Show that

PLQ—‘ _n2+3

4
We use a direct proof. As n is an odd integer, there exists an integer k such that n = 2k + 1.
Then n? = 4k® + 4k + 1. Therefore,
LHS = [nﬂ =R+ k+ 1) =R +k+ [N =k +k+1
and
_ n?+3 _ 4k24+4k+4 _ 1.2
RHS = "= = 7 =k+k+1
Therefore LHS = RHS; the property is true.




Exercise 3

e a). Show that if a function f(z) from R to R is O(z), then f(z) is O(z?).

By definition of O, there exists a real number k& and a constant C such that if x > k, then

|f(2)] < Clal.

Let ko = max(k,1). Since kg > k, we have that for x > ko,
[f(@)] < Clz|

Since kg > 1, we have that for x > ko,

2] < |2?|

Combining those two inequalities, we get that for = > ko,
|f(2)] < Cla?|

Therefore f(x) is O(z?).

e b). Show that f(n) =mnlog(n®+1)+ l,;’g(ff is O(nlog(n)).

Notice first that f(n) can be written as the sum of two functions g(n) = nlog(n? + 1) and
h(n) = lgg’ﬁﬁ) Let us work separately with g(n) and h(n):

i) Notice that:

g(n) = nlog(n?(1+ n—lz)) = 2nlog(n) + nlog(1l + #)

Since ; < 1forn >1,1+ 5 <2 and nlog(l + -5) < nlog(2). Therefore nlog(1 +

O(n). Since 2nlog(n) is O(nlog(n)), we conclude that g(n) is O(nlog(n)).
ii) Notice that

__log(n
hin)="%4" < po<n

Therefore h(n) is O(n).

We found that g(n) is O(nlog(n)) and h(n) is O(n): f(n) = g(n) + h(n) is therefore
O(maz(nlog(n),n)), namely O(nlog(n)).
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