ECS20 Final: Review problems

Exercise 1:

Prove the following statements:

- (a) If $m^2 + n^2 \neq 0$, then $m \neq 0$ or $n \neq 0$
- (b) If m+n is odd, then m or n must be even
- (c) If *mn* is even, then *m* or *n* must be even

Exercise 2:

Prove that if 6 divides n^3 -*n*, then 6 divides $(n+1)^3$ -(n+1)

Exercise 3:

Prove that every prime number *n* greater than 3 has a square that is of the form 12k+1. (Hint: use of proof by case, considering the divisibility of *n* by 6)

Exercise 4:

Prove that the sum of any three consecutive perfect cubes is divisible by 3. (Hint: three consecutive perfect cubes can be written $(n-1)^3$, n^3 and $(n+1)^3$)

Exercise 5:

Simplify:

$$P = (1+a)(1+a^2)(\cdots)(1+a^{2^n})$$

Exercise 6:

Use proof by induction to show that:

a) Let a_k be the sequence defined by $a_k = a_{k-1} + (k+4)$ for $k \ge 2$, where $a_1 = 5$. Show that n(n+9)

$$a_{n} = \frac{n(n+9)}{2} \quad \forall n \ge 1$$

b)
$$\sum_{i=1}^{n} \frac{1}{(2i-1)(2i+1)} = \frac{n}{2n+1} \quad \forall n \ge 1$$

c) Prove that 3 divides
$$4^n - 1$$
 $\forall n \ge 1$

Exercise 7:

Pigeonhole principle:

- a) Given any seven integers, there will be two that have a difference divisible by 6.
- b) Given any twelve integers between 0 and 99, there will be two that have a difference equals to a 2-digit integer with repeating digits (such as 11, 22, 33...).

- c) Take 6 points in the plane. The points are connected in pairs by edges. The edges are colored in one of two colors. Then we know that there are 3 points such that the edges connecting them have one and the same color.
- d) What is the minimum number of students, each of whom comes from one of the 50 states, enrolled in a university to guarantee that there are at least 100 who come from the same state?

Exercise 8:

Counting:

- a) How many strings of six lowercase letters from the English alphabet contain:
 - a. The letter a?
 - b. The letters a and b?
- b) How many bit strings contain exactly eight 0s and 10 1s if every 0 must be immediately followed by a 1.
- c) How many ways are there to seat six people around a circular table?