
Review for Final

Exercise 1

(a) We want to prove : If m2 + n2 6= 0, then m 6= 0 or n 6= 0.
Let P and Q be the propositions “m2 + n2 6= 0” and “m 6= 0 or n 6= 0”, respectively. To
prove P → Q, we use an indirect proof, i.e. we prove that ¬Q→ ¬P .
If ¬Q is true, then m = 0 and n = 0. Then m2 + n2 = 0, i.e. ¬P is true. Therefore, using an
indirect proof, we have shown that if m2 + n2 6= 0, then m 6= 0 or n 6= 0.

(b) We want to prove : If m + n is odd, then m or n must be even.
Let P and Q be the proposition “m + n is odd”, and “m or n are even”, respectively. To
prove P → Q, we use an indirect proof, i.e. we prove that ¬Q→ ¬P .
If ¬Q is true, then m and n are odd, i.e. there exist k and l such that m = 2k + 1 and
n = 2l + 1. Then m + n = 2k + 2l + 2 = 2(k + l + 1), i.e. m + n is even, which means ¬P
is true. Therefore, using an indirect proof, we have shown that If m + n is odd, then m or n
must be even.

(c) We want to prove : If mn is even, then m or n must be even.
Let P and Q be the proposition “mn is even”, and “m or n are even”, respectively. To prove
P → Q, we use an indirect proof, i.e. we prove that ¬Q→ ¬P .
If ¬Q is true, then m and n are odd, i.e. there exist k and l such that m = 2k + 1 and
n = 2l + 1. Then mn = 4kl + 2k + 2l + 1 = 2(2kl + k + l) + 1, i.e. mn is odd, which means
¬P is true. Therefore, using an indirect proof, we have shown that If mn is even, then m or
n must be even.

Exercise 2

We want to prove: If 6|(n3 − n), then 6|((n + 1)3 − (n + 1)).
Proof : Let n3 − n = 6k, as 6|(n3 − n).

(n + 1)3 − (n + 1) = n3 + 3n2 + 3n + 1− (n + 1)

= n3 − n + 3n2 + 3n

= 6k + 3(n2 + n)

= 6k + 3n(n + 1)

Note that either n or n + 1 is even, and since the product of an even number by an odd number is
even, n(n+ 1) is even, i.e. there exists l such that n(n+ 1) = 2l. Replacing in the equation above,
we get:

(n + 1)3 − (n + 1) = 6k + 6l = 6(k + l)

Therefore 6|((n + 1)3 − (n + 1)).
Notice that this would have been the inductive step for a proof by induction that for all n ≥ 1,
6|(n3 − n).

Exercise 3

Let us assume p is a prime number and p > 3. Let us divide p by 6: p = 6k + n, where n ∈
{0, 1, 2, 3, 4, 5}. We will see that certain values of n are not possible when p is prime:
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• n = 0: If n = 0, p = 6k, but p cannot be a multiple of 6, as p is prime.

• n = 2 or n = 4 : If n is even, then, n = 2k′ and p = 6k + 2k′ = 2(3k + k′), which means that
p is even; again, this is not possible as p is prime.

• n = 3: If n = 3, then p = 6k + 3 = 3(2k + 1), which means that p has a factor, 3, and this is
not possible as p 6= 3 and p is prime.

• n=1 : p2 = (6n+ 1)2 = 36n2 + 12n+ 1 = 12(3n2 +n) + 1 = 12k1 + 1, for k1 = 3n2 +n, where
k1 is an integer.

• n=5 : p2 = (6n+5)2 = 36n2+60n+25 = 12(3n2+5n+2)+1 = 12k5+1, where k3 = 3n2+5n+2
and k3 is an integer.

Thus, if p is prime and p > 3, p2 can be written in the form 12k + 1, where k is an integer.
Note that we have proved something stronger that what is needed. We have shown that any number
that can be written in the form 6n + 1 or 6n + 5 has a square that can be written in the form
12k + 1. Not all these numbers are prime, but all prime numbers are in this form.

Exercise 4

Let n be an integer, then n − 1, n and n + 1 are 3 consecutive integers. Using the formula
(a + b)3 = a3 + 3a2b + 3ab2, the sum of their cubes can be written as:

(n− 1)3 + n3 + (n + 1)3 = n3 − 3n2 + 3n− 1 + n3 + n3 + 3n2 + 3n + 1

= 3n3 + 6n

= 3(n3 + 2n)

Thus the sum of three consecutive perfect cubes can be written as a multiple of 3.

Exercise 5

Let Pn be defined as Pn = (1 + a)(1 + a2) . . . (1 + a2
n
)

Let us consider Qn = (1− a)Pn = (1− a)(1 + a)(1 + a2) . . . (1 + a2
n
).

We can write: Q0 = (1− a)(1 + a), Q1 = Q0(1 + a2), . . ., Qn = Qn−1(1 + a2
n
).

We evaluate Q step by step:

Q0 = (1− a)(1 + a) = (1− a2)

Q1 = (1− a2)(1 + a2) = (1− a4)

Q2 = (1− a4)(1 + a4) = (1− a8)

. . .

Qn = (1− a2
n
)(1 + a2

n
) = (1− a2

n+1
)

(Note that to be completely rigorous, we would have to justify that this is true for all n by induction).
To get back to Pn, we consider two cases:

• a 6= 1. Then Pn =
Qn

1− a
=

1− a2
n+1

1− a
.

• a = 1. We cannot use Q, and we go back to the definition of Pn: Pn = (1+1)(1+1) . . . (1+1) =
2n+1.

2



Exercise 6

a) Let ak be the sequence defined as ak = ak−1 + k + 4, for k > 1, with a1 = 5.

Let Pn be the proposition that an =
n(n + 9)

2
. We want to prove that Pn is true, ∀n > 0.

To simplify the notations, we write LHS(n) = an and RHS(n) =
n(n + 9)

2
. Pn is true means

LHS(n) = RHS(n)

• Basis step: n = 1, then
LHS(1) = a1 = 5 and

RHS(1) =
1 ∗ (1 + 9)

2
=

10

2
= 5.

hence P (1) is true.

• Inductive step: Let us assume that Pk is true for any integer k > 0. We want to prove
that Pk+1 is true:

LHS(k + 1) = ak+1

= ak + (k + 1) + 4

=
k(k + 9)

2
+ k + 5

=
k(k + 9) + 2k + 10

2

=
k2 + 11k + 10

2

=
(k + 1)(k + 10)

2

and

RHS(k + 1) =
(k + 1)(k + 1 + 9)

2

=
(k + 1)(k + 10)

2

Therefore LHS(k + 1) = RHS(k + 1), i.e. Pk+1 is true.

According to the principle of mathematical induction, we can conclude that for all n ≥ 1, we

get an =
n(n + 9)

2
.

b) Let Pn be the proposition
n∑

i=1

1

(2i− 1)(2i + 1)
=

n

2n + 1
. We want to show that Pn is true

∀n > 0.

To simplify the notations, we write LHS(n) =
n∑

i=1

1

(2i− 1)(2i + 1)
and RHS(n) =

n

2n + 1
.

Pn is true means LHS(n) = RHS(n)

• Basis step: For n = 1,

LHS(1) =
1

(2− 1)(2 + 1)
=

1

3
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and

RHS(1) =
1

2 ∗ 1 + 1
=

1

3

Since LHS(1) = RHS(1), P1 is true.

• Inductive step: Let us assume that Pk is true for any integer k > 0.

LHS(k + 1) =
k+1∑
i=1

1

(2i− 1)(2i + 1)

=
k∑

i=1

1

(2i− 1)(2i + 1)
+

1

(2(k + 1)− 1)(2(k + 1) + 1)

=
k

2k + 1
+

1

(2k + 1)(2k + 3)

=
k(2k + 3) + 1

(2k + 1)(2k + 3)

=
2k2 + 3k + 1

(2k + 1)(2k + 3)

=
(k + 1)(2k + 1)

(2k + 1)(2k + 3)

=
k + 1

2k + 3

and

RHS(k + 1) =
k + 1

2(k + 1) + 1
=

k + 1

2k + 3

Hence, LHS(k+1) = RHS(k+1), i.e. we have proved that Pk+1 is true, given Pk is true.

Thus, we have proved by induction that
n∑

i=1

1

(2i− 1)(2i + 1)
=

n

2n + 1
, ∀n > 0.

c) Let Pn be the proposition 3|(4n − 1); we want to show that Pn is true ∀n > 0.

• Basis step: For n = 1, 4n − 1 = 4− 1 = 3 and 3|3. Hence P1 is true.

• Inductive step: Let us assume that Pk is true for any integer k > 0.
Since 3|(4k − 1), there exits m such that 4k − 1 = 3m. Then, we can write (4k+1 − 1)
as, 4 ∗ 4k − 1 = 4 ∗ (3m + 1)− 1 = 12m + 3 = 3(4m + 1). Therefore 3|(4k+1 − 1).
Hence, we have proved that Pk+1 is true, given Pk is true.

Thus, we have proved by induction that 3|(4n − 1), ∀n > 0.

Exercise 7

a) For any 2 integers a, b, 6|(a− b) if a ≡ b(mod 6), which is equivalent to a(mod 6) = b(mod 6).
In plain English, 6|(a− b) if the remainder of the division of a by 6 is equal to the remainder
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of the division of b by 6.
There are 6 possible values for the remainder of a division by 6 : {0, 1, 2, 3, 4, 5}. Let each
of these values be a “box”, and let the seven given integers by “objects”. According to the
pigeonhole principle, arranging 7 “objects” into 6 “boxes” will lead to one of the “boxes”
containing at least two “objects”. These two integers will therefore have the same remainder
upon division by 6, and consequently their difference will be divisible by 6.

b) The question can be rewritten as given any 12 integers, there will be at least one pair of
integers whose difference is divisible by 11. We follow the same reasoning as above. Let the
“boxes” be the possible values for the remainder of the division of an integer by 11. There are
11 such “boxes”. When the given 12 integers are arranged into these “boxes”, one box will
contain at least 2 integers. These two integers will have the same remainder upon division
by 11, and consequently their difference will be divisible by 11.

c) This problem is similar to Ramsey’s problem I solved in class, in which we showed that among
6 people, there is always a group of 3 mutual friends or a group of 3 strangers. I will follow
the same type of proof.
Let A be one of the points. There are 5 vertices that start from A, that can be of one of the 2
colors. According to the Pigeonhole Principle, at least 3 of these edges are of the same color,
C1. Let B, C and D be the 3 corresponding points. These 3 points are connected together
by a set of 3 edges, BC, BD and CD. We have to consider two cases:

• At least one of the three edges BC, BD, CD is of color C1: let BC be that edge. Then
all edges between A,B,C are of color C1!

• All three edges BC, BD and CD have color C2: then B,C,D is the set of points we are
looking for!

In all cases, we find 3 points that are connected by 3 edges of the same color.

1. d) Let us reformulate this problem by introducing “boxes” and “objects”: We have 50 states
which are the “boxes”, and M students enrolled in university which are the “objects”. Ac-
cording to the Pigeonhole Principle, one of the “boxes” will contain N = dM50e “objects”,
i.e. there will be N students coming from the same state. We want N = 100. Let us write
M = 50k+ l, with 0 ≤ l ≤ 49. If l = 0, then dM50e = k, in which case k = 100, and M = 5000.
If l 6= 0, then dM50e = k − 1, in which case k = 99, and hence, M = 4950 + l. The minimum
value of M is therefore M = 4951.

Exercise 8

a) Let E be the set of all possible (lowercase) six-letter strings. There are 266 such strings, and
therefore |E| = 266.

• Let SA be the set of all six-letter strings that contain a. The complement of SA in E,
SA, is the set of all six-letter string that do not contain a. There are 256 such strings, and
therefore |SA| = 256. Using the rule of complement, we find that |SA| = |E| − |SA| =
266 − 256 = 64775151.

• Let SAB be the set of all six-letter strings that contain “a” and “b”. Again, it is easier
to work with the complement of SAB. SAB is the set of six-letter strings that do not
contain “a” or do not contain “b”. Let SA be the set of 6-letter strings that do not
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contain “a”, and SB be the set of 6-letter strings that do not contain “b”. Then, SAB =
SA ∪ SB. Using the general sum rule, we find that |SAB| = |SA|+ |SB| − |SA ∩ SB|.
– SA is the set of six-letter strings that do not contain “a”. We have seen above that

there are 256 such strings: |SA| = 256.

– SB is the set of six-letter strings that do not contain “b”. It is easy to see that
there are 256 such strings: |SB| = 256.

– SA ∩ SB is the set of six-letter strings that contain neither “a” nor “b”. There are
246 such strings: |SA ∩ SB| = 246.

Therefore |SAB| = 256 + 256−246, and |SAB| = |E|− |SAB| = 266−256−256 + 246 =
11737502.

b) The question can be rewritten as placing 8 “01” blocks and the 2 extra “1”’s in the bit string.
We therefore have 10 objects in all, with 8 copies of “01” and 2 copies of “1”. There are
C(10, 8) = 45 different ways to organize these 10 objects.

c) This problem is completely equivalent to the problem of finding the number of ways to arrange
6 children in a circle. There are 6! ways to arrange 6 people in a line, but if we make this
line circular, each string will appear 6 times, “rotated” by 60 degrees. Therefore there are
6!

6
= 5! = 5 ∗ 4 ∗ 3 ∗ 2 ∗ 1 = 120 ways of seating 6 people around a round table.
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