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Part I: Proofs

1) Let a and b be two real numbers with a ≥ 0 and b ≥ 0. Use a proof by contradiction to show
that a+b

2 ≥
√
ab.

Let P be the proposition a+b
2 ≥

√
ab. The concept of proof by contradiction is to assume that

P is false.

Then a+b
2 <

√
ab. Raising both sides to the power 2, we get:

(a+b)2

4 < ab

which can be rewritten as:

(a + b)2 − 4ab < 0

However, (a + b)2 − 4ab = (a − b)2, and this expression is positive. We have therefore
reached a contradiction. The property P is therefore true. (this property in fact states that
the arithmetic mean of two numbers is bigger or equal to the geometric mean of the same
numbers).

2) Let x and y be two integers. Show that if x2 + y2 is even, then x + y is even.

Let p be the proposition x2 + y2 is even, and let q be the proposition x + y is even. We will
use an indirect proof, i.e. we will show that ¬q → ¬p.

Hypothesis: ¬q is true, i.e. x + y is odd. There exists an integer number k such that
x + y = 2k + 1. Then:

(x + y)2 = (2k + 1)2

i.e.

x2 + y2 + 2xy = 4k2 + 4k + 1

x2 + y2 = 4k2 + 4k + 1− 2xy

x2 + y2 = 2(2k2 + 2k − xy) + 1

Therefore x2 + y2 is odd, i.e. ¬p is true.

We can then conclude that p→ q is true.

3) Let A = {1, 2, 3} and R = {(2, 3), (2, 1)}. Prove that if a, b, and c are three elements of A
such that (a, b) ∈ R and (b, c) ∈ R, then (a, c) ∈ R.

Let P be the proposition a, b, and c are three elements of A such that (a, b) ∈ R and (b, c) ∈ R
and let Q be the proposition (a, c) ∈ R. We want to show P → Q.

Let us study P . Since (a, b) ∈ R, b = 3 or b = 1. Since (b, c) ∈ R, b = 2. This two statements
cannot be true at the same time: we have reached a contradiction and P is always false. If
P is always false, P → Q is always true!
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4) Prove or disprove that if n is odd, then n2 + 4 is a prime number.

This is most likely false. We try several values of n:

• n = 1. Then n2 + 4 = 5 that is prime.

• n = 3. Then n2 + 4 = 13 that is prime.

• n = 5. Then n2 + 4 = 29 that is prime.

• n = 7. Then n2 + 4 = 53 that is prime.

• n = 9. Then n2 + 4 = 85 that is not prime!

We have found one counter-example (n = 9) for which the property is not true.

Part II: Proof by induction

Exercise 1

Let P (n) be the proposition:

n∑
i=1

1

2i
= 1− 1

2n

We want to show that P (n) is true for all n ≥ 1.

Let us define: LHS(n) =

n∑
i=1

1

2i
and RHS(n) = 1

2n − 1.

• Basis step:

LHS(1) =
1

2
RHS(1) = 1− 1

2
=

1

2

Therefore P (1) is true.

• Induction step: We suppose that P (k) is true, with 1 ≤ k. We want to show that P (k + 1)
is true.

LHS(k + 1) =
k+1∑
i=1

1

2i

=
k∑

i=1

1

2i
+

1

2k+1

= LHS(k) +
1

2k+1

= RHS(k) +
1

2k+1

= 1− 1

2k
+

1

2k+1

= 1− 1

2k+1
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and

RHS(k + 1) = 1− 1

2k+1

Therefore LHS(k + 1) = RHS(k + 1), which validates that P (k + 1) is true.

The principle of proof by mathematical induction allows us to conclude that P (n) is true for all
n > 0.

Exercise 2

Let {an} be a sequence with first terms a1 = 2, a2 = 8, and recursive definition: an = 2an−1 +
3an−2 + 4.

Let P (n) be the proposition:

an = 3n − 1

We want to show that P (n) is true for all n ≥ 1 using a method of proof by strong induction.
Let us define: LHS(n) = an and RHS(n) = 3n − 1.

• Basis step:

LHS(1) = 2 RHS(1) = 3− 1 = 2

LHS(2) = 8 RHS(2) = 32 − 1 = 9− 1 = 8

Therefore P (1) and P (2) are true (note that the prove that both P(1) and P(2) are true, so
that we can assume k ≥ 2 in the induction step).

• Strong induction step: We suppose that P (1), P (2), . . .,P (k) are true, with 2 ≤ k. We want
to show that P (k + 1) is true.

LHS(k + 1) = ak+1

= 2ak + 3ak−1 + 4

= 2LHS(k) + 3LHS(k − 1) + 4

= 2RHS(k) + 3RHS(k − 1) + 4

= 2(3k − 1) + 3(3k−1 − 1) + 4

= 2× 3k + 3k − 2− 3 + 4

= 3× 3k − 1

= 3k+1 − 1

and

RHS(k + 1) = 3k+1 − 1

Therefore LHS(k + 1) = RHS(k + 1), which validates that P (k + 1) is true.

The principle of proof by strong induction allows us to conclude that P (n) is true for all n > 0.
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Exercise 3

Let x be a positive real number (x > 0 and let P (n) be the proposition:

(1 + x)n > 1 + nx

We want to show that P (n) is true for all n ≥ 2.
Let us define: LHS(n) = (1 + x)n and RHS(n) = 1 + nx.

• Basis step:

LHS(2) = (1 + x)2 = 1 + 2x + x2 RHS(2) = 1 + 2x

Since x > 0, x2 > 0 and 1 + 2x + x2 > 1 + 2x. Therefore LHS(2) > RHS(2), i.e. P (2) is
true.

• Induction step: We suppose that P (k) is true, with 2 ≤ k. We want to show that P (k + 1)
is true.

Since P (k) is true, we know that:

(1 + x)k > 1 + kx

Since x ¿ 0, 1+x ¿0. We can multiply both sides of the inequality without changing the
direction:

(1 + x)k+1 > (1 + x)(1 + kx)

We recognize LHS(k + 1) on the left side of this inequality:

LHS(k + 1) > (1 + x)(1 + kx)

> 1 + kx + x + kx2

> 1 + (k + 1)x + kx2

Since kx2 > 0, 1 + (k + 1)x + kx2 > 1 + (k + 1)x. Therefore

LHS(k + 1) > 1 + (k + 1)x

> RHS(k + 1)

Therefore LHS(k + 1) > RHS(k + 1), which validates that P (k + 1) is true.

The principle of proof by mathematical induction allows us to conclude that P (n) is true for all
n > 0.

Exercise 4

Let P (n) be the proposition: fn−1fn+1 = f2
n + (−1)n.

We define LHS(n) = fn−1fn+1 and RHS(n) = f2
n + (−1)n. We want to show that P (n) is true

for all n ≥ 1.

4



• Basic step:

LHS(1) = f0 × f2 = f0 × (f1 + f0) = 0× (1 + 0) = 0

RHS(1) = f2
1 + (−1)1 = 1− 1 = 0

Therefore LHS(1) = RHS(1) and P (1) is true.

• Inductive step: Let k be a positive integer greater or equal to 2, and let us suppose that P (k)
is true. We want to show that P (k + 1) is true.
Then

LHS(k + 1) = fkfk+2

= fk (fk + fk+1)

= f2
k + fkfk+1

Using the fact that P (k) is true, i.e. f2
k = fk−1fk+1 − (−1)k, we get:

LHS(k + 1) = fk−1fk+1 − (−1)k + fkfk+1

= fk−1fk+1 + fkfk+1 − (−1)k

= (fk−1 + fk) fk+1 + (−1)k+1

= fk+1fk+1 + (−1)k+1

= f2
k+1 + (−1)k+1

and

RHS(k + 1) = f2
k+1 + (−1)k+1

Therefore LHS(k + 1) = RHS(k + 1), which validates that P (k + 1) is true.

The principle of proof by mathematical induction allows us to conclude that P (n) is true for all
n ≥ 2.

Part III: sets- functions

Exercise 1

Let f , g, and h be three functions from R+ to R+. Using the definition of big-O, show that if f is
O(g) and g is O(h) then f is O(h).

By definition of big-O, f is O(g) means:

∃k1 > 0, ∃C1 > 0,∀x > k1, |f(x)| ≤ C1|g(x)|

Similiarly, g if O(h) means

∃k2 > 0, ∃C2 > 0,∀x > k2, |g(x)| ≤ C2|h(x)|

Let k = max(k1, k2). Then, for all x > k, we have |f(x)| ≤ C1|g(x)| and |g(x)| ≤ C2|h(x)|,
therefore |f(x) ≤ C1C2|h(x)|.

Let C = C1C2. We have found that:

∃k > 0, ∃C > 0,∀x > k, |f(x)| ≤ C|h(x)|

Therefore f if O(h).
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Exercise 2

Let A, B, and C be three sets in a universe U . Show that |A
⋂
B| = |U | − |A| − |B|+ |A

⋂
B|.

We note first that according to deMorgan’s law,

A
⋂

B = AUB

Based on the complement’s law,

|A
⋂

B| = |AUB| = |U | − |A
⋃

B|

Finally, based on the inclusion-exclusion principle,

|A
⋃

B| = |A|+ |B| − |A
⋂

B|

Replacing in the equation above, we get:

|A
⋂

B| = |U | − |A| − |B|+ |A
⋂

B|

i.e. the property is true.

Exercise 3

Show that if n is an odd integer, dn2

4 e = n2+3
4

We use a direct proof. Let n be an odd integer and let us define LHS(n) = dn2

4 e and RHS(n) =
n2+3
4 .

Let n be an odd integer There exists k ∈ Z such that n = 2k + 1. Then n2 = 4k2 + 4k + 1.
Therefore:

LHS(n) =
⌈4k2 + 4k + 1

4

⌉
=

⌈
k2 + k +

1

4

⌉
= k2 + k +

⌈1

4

⌉
= k2 + k + 1

and

RHS(n) =
4k2 + 4k + 1 + 3

4

=
4k2 + 4k + 4

4
= k2 + k + 1

Therefore LHS(n) = RHS(n). The property is true.
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Extra credit

Use the method of proof by strong induction to show that any amount of postage of 12 cents or
more can be formed using just 4-cent and 5-cent stamps.

Let P (n) be the property: the amount of postage of n cents can be formed using just 4-cent
and 5-cent stamps. We want the show that P (n) is true, for all n ≥ 12.

Let us first analyze what this property means. We can rewrite it as: ”There exists two non-
negative integers m and p such that n = 4m + 5p. We prove the property first using strong
induction.

• Basis step: We want to show that P (12), P (13), P (14), and P (15) are true.

Note that 12 = 4 × 3 + 5 × 0. We found a pair of non negative integers (m, p) = (3, 0) such
that 12 = 4m+ 5p. P(12) is therefore true. Note that 13 = 4× 2 + 5× 1. We found a pair of
non negative integers (m, p) = (2, 1) such that 13 = 4m + 5p. P(13) is therefore true. Note
that 14 = 4 × 1 + 5 × 2. We found a pair of non negative integers (m, p) = (1, 2) such that
14 = 4m + 5p. P(14) is therefore true. Note that 15 = 4× 0 + 5× 3. We found a pair of non
negative integers (m, p) = (0, 3) such that 15 = 4m + 5p. P(14) is therefore true.

• Strong induction step: We suppose that P (12), P (13), . . . , and P (k) are true, for k ≥ 15, and
we want to show that P (k + 1) is true.

Since P is true for all values up to k, it is true in particular for k − 3 (we are allowed to use
k − 3 as k ≥ 15. Therefore, there exists two non negative integers (m, p) such that

k − 3 = 4m + 5p

Adding 4 to this equation, we get:

k + 1 = 4(m + 1) + 5p

We found a pair of non negative integers (m′, p′) = (m + 1, p) such that k + 1 = 4m′ + 5p′.
P(k+1) is therefore true.

The principle of proof by strong induction allows us to conclude that P (n) is true for all n ≥ 12.

Let us repeat the proof, but this time we only use induction.

• Basis step: It remains the same. We want to show that P (12) is true.

Note that 12 = 4 × 3 + 5 × 0. We found a pair of non negative integers (m, p) = (3, 0) such
that 12 = 4m + 5p. P(12) is therefore true.

• induction step: This time, we only suppose that P (k) is true, for k ≥ 12, and we want to
show that P (k + 1) is true.

Since P (k) is true, there exists two non negative integers (m, p) such that

k = 4m + 5p

Adding 1 to this equation, we get:

k + 1 = 4m + 5p + 1
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We notice that 1 can be written as 5 - 4. In which case:

k + 1 = 4m + 5p + 5− 4

= 4(m− 1) + 5(p + 1)

m− 1 may not be non-negative however, based on the value of m. We therefore distinguish
two cases:

• m 6= 0 In this case, m − 1 is non negative. We found a pair of non negative integers
(m′, p′) = (m− 1, p + 1) such that k + 1 = 4m′ + 5p′. P(k+1) is therefore true.

• m = 0 In this case, m− 1 is negative. Let us go back to

k + 1 = 4m + 5p + 1

= 5p + 1

Since m = 0. We note first that p ≥ 3 as k ≥ 12. We notice then that 1 = 16 − 15. In
this case:

k + 1 = 5p + 16− 15

= 4× 4 + 5(p− 3)

with 4 and p−3 being non negative. We found a pair of non negative integers (m′, p′) =
(4, p− 3) such that k + 1 = 4m′ + 5p′. P(k+1) is therefore true.

In both cases, P (k + 1) is true.

The principle of proof by mathematical induction allows us to conclude that P (n) is true for all
n ≥ 12.

8


