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1 Part I: logic (2 questions, each 10 points; total 20 points)

1) For each proposition on the left, indicate if it is a tautology or not:

Table 1: Propositional logic

Proposition Tautology (Yes/ No)

if 1+3=5 then 3=6
Yes! This is p→ q where p is false:

therefore p→ q is always true

(p ∧ ¬p)→ q
Yes: since p ∧ ¬p is always false, this is of

the form A→ q where A is false:
therefore A→ q is always true

(p ∨ ¬p)→ (q ∧ ¬q)
No: notice that p ∨ ¬p is always true and
q ∧ ¬q is always false, then this is of the

form T → F which is always false

if 2+2=4 then 3=4
No! This is p→ q where p is true and q

is false, therefore p→ q is false

(p ∧ ¬q) ∨ (¬p ∨ q)
Yes! If A = p ∧ ¬q then this is of the
form A ∨ ¬A which is always true.

2) Lady and Tiger

Let us play a logical game. You find yourself in front of two rooms whose doors are closed. If
a lady is in Room I, then the sign on the door is true, but if a tiger is in it, the sign is false.
In Room II, the situation is the opposite: a lady in the room means the sign on the door is
false, and a tiger in the room means the sign is true. It is possible that both rooms contain
ladies or both rooms contain tigers, or that one room contains a lady and the other a tiger.
Both signs say ”both rooms contain ladies. Can you say what each room contains? Explain
your answer.

Let us build the table for the possible options for room I and room II. We then check the
validity of the two signss, and finally check the consistency of the truth values for those
statements with what is told to us about the rooms.

Therefore room I contains a Tiger, and room II contains a Lady.
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room I room II Sign on room I sign on room II Compatibility

Lady Lady True True False for room II: contains a Lady, but sign is true
Lady Tiger False False False for room I: contains a Lady, but sign is false
Tiger Lady False False Consistent
Tiger Tiger False False False for room II: contains a tiger, but sign is false

2 Part II: Proofs (4 questions, each 10 points; total 40 points)

1) Let a and b be two strictly positive real numbers. Use a proof by contradiction to show that
if a

b+1 = b
a+1 then a = b.

This is a problem of showing that a conditional p→ q is true, where

p : a
b+1 = b

a+1
q : a = b

We will use a proof by contradiction

Assumption: we suppose p→ q is false i.e. that p is true AND ¬q is true, namely a
b+1 = b

a+1
AND a 6= b.
a

b+1 = b
a+1 can be rewritten a(a+ 1) = b(b+ 1), i.e. a− b = b2−a2, i.e. a− b = (b−a)(b+a).

Since we suppose that a 6= b, we can divide by (a− b) and we get that b + a = −1. However,
a and b are strictly positive real numbers; we have reached a contradiction.

Therefore p→ q is true, i.e. if a
b+1 = b

a+1 then a = b.

2) Let n be a natural number. Show that n(n + 1) is divisible by 2.

This is a very simple problem that is solved using a proof by case. Let n be a natural number.
There are two cases to consider:

a) n is even. There exists an integer k such that n = 2k. Then n(n + 1) = 2k(2k + 1) is a
multiple of 2, therefore divisible by 2.

b) n is odd. There exists an integer k such that n = 2k+ 1. Then n(n+ 1) = (2k+ 1)(2k+
2) = 2(k + 1)(2k + 1) is a multiple of 2, therefore divisible by 2.

In all cases, n(n + 1) is divisible by 2.

3) Let A, B, and C be three sets in a domain D. Show that if A ∈ B and B
⋂
C = ∅, then

A
⋂
C = ∅

We will use a proof by contradiction.

Hypothesis: A ∈ B and B
⋂
C = ∅ AND A

⋂
C 6= ∅.

Since A
⋂
C 6= ∅, there exists an x in D that belongs to A

⋂
C. x belongs to A and x belongs

to C. Since x belongs to A, and A ∈ B, x belongs to B. Therefore x belongs to both B and
C; but since B

⋂
= ∅, this element x does not exist. We have reached a contradiction.

Therefore the initial proposition is true.
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4) Evaluate the remainder of the division of 143141 by 17.

Let A = 143139. Note first that 3139 = 17× 184 + 11, therefore A = (14184)17 × 1411.

Since 17 is prime, we can use Fermat’s little theorem, i.e. for all natural number a,

a17 ≡ a[17]

Therefore,

A ≡ (14184)17 × 1411[17]

≡ 14184 × 1411[17]

≡ 14195[17]

Now we note that 195 = 11× 17 + 8, therefore 14195 = (1411)17 × 148. Therefore:

A ≡ 14195[17]

≡ (1411)17 × 148[17]

≡ 1411 × 148[17]

≡ 1419[17]

Now we note that 19 = 1× 17 + 2, therefore 1419 = (14)17 × 142. Therefore:

A ≡ 1419[17]

≡ 1417 × 142[17]

≡ 143[17]

Note that 142 ≡ 9[17], therefore 143 ≡ 7[17].

Therefore

A ≡ 7[17]

and the remainder of the division of 143139 by 17 is 7.

3 Part III: Proof by induction (3 questions; each 10 points; total
30 points)

1) Prove by induction that 32n+1 + 2n+2 is divisible by 7, ∀n ≥ 0.

Let us define LHS(n) = 32n+1 + 2n+2

Let p(n) : 7/LHS(n)
We want to show p(n) is true for all n ≥ 0
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a) Base Case n=0
LHS(0) = 3 + 4 = 7
Since 7/LHS(0), p(0) is true

b) Inductive Step
I want to show p(k)→p(k+1) whenever k≥1
p(k) is true means there exists an integer m such that LHS(k) = 32k+1 + 2k+2 = 7m,
which we rewrite as 2k+2 = −32k+1 + 7m.
Note that:

LHS(k + 1) = 32k+3 + 2k+3

= 9× 32k+1 + 2× 2k+2

= 9× 32k+1 + 2× (−32k+1 + 7m)

= 7(2m) + 7× 32k+1

= 7(2m + 32k+1)

Therefore 7/LHS(k + 1) which validates that p(k + 1) is true.

The principle of proof by mathematical induction allows us to conclude that p(n) is true for
all n ≥ 1.

2) Prove by induction that 4n − 1 is divisible by 5 whenever n is a strictly positive even integer

Let p(n) be the proposition that 4n − 1 is divisible by 5.
This is not always true: it is not true for example when n = 1, or when n = 3. It is true
however when n is even. But we need to modify this proposition to make it amenable to a
proof by induction.

Notice that n is even and n > 0 means that there exists k ∈ N such that n = 2k. We rewrite
p(n) as a new proposition Q that depends on k:

Q(k) : 42k − 1 is divisible by 5. We need to show Q(k) for all integer values k > 0! We are
back to a traditional proof by induction.

a) Basis step k=1
Note that 42 − 1 = 16− 1 = 15 is divisible by 5. Therefore Q(1) is true.

b) Inductive Step
We want to show Q(k)→Q(k+1) whenever k ≥ 1
Hypothesis: Q(k) is true: 42k−1 is divisible by 5; there exists m ∈ Z such that 42k−1 =
5m.
Let us compute A = 42(k+1) − 1:

A = 42k+2 − 1

= 16× 42k − 1

Replacing 42k by 5m + 1 (based on Q(k) being true), we get:

A = 16(5m + 1)− 1

= 5(16m) + 15

= 5(16m + 3)
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Therefore Q(k + 1) is true.

The principle of proof by mathematical induction allows us to conclude that Q(k) is true for
all k ≥ 1.

3) Let x and y be two strictly positive integers. We consider the equation:

(x2 + xy − y2)2 = 1 (1)

If (x, y) satisfies this equation, it is called a solution. Let now an be the sequence defined by
a0 = a1 = 1 and an+2 = an+1 + an. Show by induction that (an, an+1) is a solution for all
n ≥ 0.

Let P (n) be the proposition: (an, an+1). We want to show that P (n) is true for all n ≥ 0.
Let us define L(n) = (a2n + anan+1 − a2n+1)

2. P (n) means L(n) = 1.

a) Basis step n=0
Since a0 = a1 = 1, we check if the pair (1, 1) is a solution to the equation: Since
L(1) = (1 + 1− 1)2 = 1, (1, 1) is indeed a solution.
Therefore P (0) is true.

b) Inductive Step
We want to show P (k)→ P (k + 1) whenever k ≥ 0

Hypothesis: (P (k) is true, i.e. ak, ak+1 is a solution, i.e. L(k) = (a2k +akak+1−a2k+1)
2 =

1:

Let us compute L(k + 1):

L(k + 1) = (a2k+1 + ak+1ak+2 − a2k+2)
2

We replace all ak+2 with ak+1 + ak:

L(k + 1) = (a2k+1 + ak+1(ak+1 + ak)− (ak+1 + ak)2)2

= (a2k+1 + a2k+1 + ak+1ak − a2k+1 − 2ak+1ak − a2k)2

= (a2k+1 − ak+1ak − a2k)2

= (−L(k))2

= 1

Therefore L(k + 1) = 1 which validates that P (k + 1) is true.

The principle of proof by mathematical induction allows us to conclude that P (n) is true for
all n ≥ 0.
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4 Part IV: Counting. (2 problems; each 10 points; total 20 points)

1) Let A = {a, b, c} be a set with three elements. We call a, b, and c “letters”. How many words
of length n can we form with only letters from A that contain at least one of each letter from
A?

Let W be the set of words of length n formed with only letters from A. There are 3n such
words. Let B be the subset of those words that contain at least one of each letter. To find the
cardinality of B, we consider instead B, i.e. the subset of words that either do not contain a,
or do not contain b, or do not contain c: B = Ba ∪Bb ∪Bc.

• |Ba| = 2n

• |Bb| = 2n

• |Bc| = 2n

• |Ba ∩Bb| = 1

• |Ba ∩Bc| = 1

• |Bb ∩Bc| = 1

• |Ba ∩Bb ∩Bc| = 0

Therefore |B| = 3× 2n − 3, and |B| = 3n − 3× 2n + 3.

2) Show that if eleven distinct numbers are selected in the set S = {1, 2, ?, 20}, there are (at
least) two of them whose difference is equal to 5.

This is a Pigeonhole problem. We need to define the pigeons and the boxes:

Pigeons: the 11 numbers

Boxes: we group the number into 10 boxes:
B1 = {1, 6} B2 = {2, 7} B3 = {3, 8} B4 = {4, 9} B5 = {5, 10} B6 =
{11, 16} B7 = {12, 17} B8 = {13, 18} B9 = {14, 19} B10 = {15, 20}
According to the PHP, since we have 11 pigeons and 10 boxes, one of these boxes will contain
two elements; the difference between those two elements is 5, by construction of the box!

5 Part V: Extra credit

Let n be a strictly positive integer. Use strong induction to show that

n∑
i=1

(−1)ii2 = (−1)n
n∑

i=1

i

for all n ≥ 1.
We define LHS(n) =

∑n
i=1(−1)ii2 and RHS(n) = (−1)n

∑n
i=1. Let P (n) be the proposition:

LHS(n) = RHS(n).
We want to show that P (n) is true for all n ≥ 1.

a) Basis cases: n=1 and n=2
LHS(1) = (−1)× 1 = −1
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RHS(1) = (−1)× 1 = −1
Therefore LHS(1) = RHS(1) and P (1) is true.
LHS(2) = (−1)× 1 + (−1)222 = −1 + 4 = 3
RHS(2) = (−1)2 × (1 + 2) = 3
Therefore LHS(2) = RHS(2) and P (2) is true.

b) Inductive Step
I want to show [P (1) ∧ ....P (k)]→ P (k + 1) whenever k ≥ 2
Hypothesis: We will only need to use P (k − 1) is true, i.e. LHS(k − 1) = RHS(k − 1).

Note that:

LHS(k + 1) =
k+1∑
i=1

(−1)ii2

=
k−1∑
i=1

(−1)ii2 + (−1)kk2 + (−1)k+1(k + 1)2

= LHS(k − 1) + (−1)kk2 + (−1)k+1(k + 1)2

= RHS(k − 1) + (−1)kk2 + (−1)k+1(k + 1)2

= (−1)k−1
k−1∑
i=1

i + (−1)kk2 + (−1)k+1(k + 1)2

= (−1)k+1

[
k−1∑
i=1

i− k2 + (k + 1)2

]

= (−1)k+1

[
k−1∑
i=1

i− k2 + k2 + 2k + 1

]

= (−1)k+1

[
k−1∑
i=1

i + k + k + 1

]

= (−1)k+1
k+1∑
i=1

i

= RHS(k + 1)

Therefore LHS(k + 1) = RHS(k + 1) which validates that P (k + 1) is true.

The principle of proof by strong mathematical induction allows us to conclude that P (n) is true
for all n ≥ 1.
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