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Exercise 1

Build a truth table for the proposition (p↔ q)⊕ (p↔ ¬q)

p q ¬q p↔ q (p↔ ¬q) (p↔ q)⊕ (p↔ ¬q)

T T F T F T
T F T F T T
F T F F T T
F F T T F T

Column 6 shows that (p↔ q)⊕ (p↔ ¬q) is a tautology.

Exercise 2

We design different proofs of the fact that the square of an even number is an even number. Let
p be the proposition ”‘n is an even number”’ and let q be the proposition ”‘n2 is an even number,
where n is an integer.

(i) Direct proof: p→ q. To prove that an implication of the form p→ q is true, it is sufficient
to prove that if p is true, then q is true. Let us assume p is true, i.e. n is even. We
know that there exists an (unique) integer k such that n = 2k. By substitution, we get
n2 = 4k2 = 2(2k2). This shows that n2 is divisible by 2 and therefore even by definition.
Hence q is true, and the implication is always true.

(ii) Indirect proof: ¬q → ¬p. In an indirect proof, we attempt to prove the contrapositive of
the original implication (this is a valid proof technique, as we know that an implication and
its contrapositive are equivalent). We suppose ¬q is true, i.e. n2 is odd, and we want to prove
that ¬p is true, i.e. n is odd. We use our knowledge from number theory! n2 is odd means
that there exists a (unique) k such that n2 = 2k + 1. Then n2 − 1 = 2k. By definition, this
means that 2 divides (n− 1)(n+ 1). Since 2 is prime, using Euclid’s first proposition, we get
that 2/(n − 1) or 2/(n + 1). If 2/(n − 1), then there exists m such that n − 1 = 2m, hence
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n = 2m+1 and n is odd, by definition. If 2/(n+1), then there exists m such that n+1 = 2m,
hence n = 2m − 1, and n is odd, by definition. In all cases, n is odd, which concludes the
proof.
An even simpler proof: since 2 is prime, according to Fermat’s little theorem, n2 ≡ n(mod2).
Hence if n2 ≡ 1(mod2), n ≡ 1(mod2).

(iii) Proof by contradiction. Given p true, we assume that ¬q is true, and we show that we
reach a contradiction. Let n be an even number, and let us assume that n2 is an odd number.
There exists k such that n2 = 2k + 1. We show then (see indirect proof above) that n is
odd, which contradicts the premise (i.e. we have p∧¬p, which is a contradiction). Hence the
assumption n2 is odd is false, and n2 is even.

Exercise 3

Suppose that a is a non-zero rational number, and b is an irrational number; we want to show
that the product ab is irrational. We use a proof by contradiction, i.e. we suppose that ab is
rational, and we attempt to show that this leads to a contradiction. Let us write ab = c, with c
rational. Since a is a non-zero rational, it has a multiplicative inverse, a−1 that is also rational.
Then b = ca−1. Since the product of two rational numbers is rational, this shows that b is rational
which contradict the premise that b is irrational. Hence the hypothesis ab is rational is false, and
ab is therefore irrational.

Exercise 4

Since there is an order relation on real numbers, given 2 real numbers, x and y, there can be 3
cases, x > y, x < y, and x = y (this is sometimes referred to as the trichotomy law).

a) When x > y, max(x, y) = x and min(x, y) = y. In this case, max(x, y) + min(x, y) = x + y.

b) When x = y, max(x, y) = min(x, y) = x = y. In this case, max(x, y) + min(x, y) = x + x =
x + y.

c) When x < y, max(x, y) = y and min(x, y) = x. In this case, max(x, y)+min(x, y) = y+x =
x + y, by commutative property of addition of real numbers.

The method of proof by cases allows us to conclude that max(x, y) + min(x, y) = x + y for all
(x, y) ∈ R2.

Exercise 5

Let a= 651000 − 82001 + 3177, b= 791212 − 92399 + 22001 and c= 244493 − 58192 + 71777; we want
to show that the product of two of these 3 numbers is non negative. In other words, we want to
show that ONE of the elements of the set {ab, ac, bc} is non negative. We develop a proof by
contradiction. We suppose that ALL the elements of the set {ab, ac, bc} are strictly negative. Let
P by the product of all the elements of that set. Since there are 3 negative elements in that set, P
is strictly negative. But P = abacbc = a2b2c2, i.e. P is the product of 3 positive numbers (three
squares), hence P is positive. We have shown that P is both strictly negative and positive, i.e
we have reached a contradiction. The hypothesis was wrong, and we therefore validate that the
product of two of the 3 numbers a, b and c is non negative.
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Exercise 6

a) x ∈ A ∪ B ⇒ x ∈ A ∨ x ∈ B. Since A ∪ B ∪ C contains all elements either in A, B or C, all
the elements of A ∪B are contained in A ∪B ∪ C. Hence, proved that A ∪B ⊂ A ∪B ∪ C.

b) We know that the conjunction logic operation is both associative and commutative. Checking
membership of (A−B)− C:

((A−B)− C) = {x | x ∈ ((A−B)− C)}
= {x | x ∈ (A−B) ∧ ¬(x ∈ C)}
= {x | (x ∈ A ∧ (¬x ∈ B)) ∧ ¬(x ∈ C)}
= {x | (¬(x ∈ B) ∧ x ∈ A) ∧ ¬(x ∈ C)}
= {x | ¬(x ∈ B) ∧ (x ∈ A ∧ ¬(x ∈ C)}
= {x | ¬(x ∈ B) ∧ (x ∈ (A− C))}

Thus, all elements of (A−B)−C are contained in (A−C) and not contained in B, which means
that all elements of (A−B)−C are elements of (A−C). This proves that (A−B)−C ⊂ (A−C).

c) Let us write the definition of (B −A) ∪ (C −A), and use logic operations:

(B −A) ∪ (C −A) = {x | x ∈ (B −A) ∨ x ∈ (C −A)}
= {x | (x ∈ B ∧ ¬(x ∈ A)) ∨ (x ∈ C ∧ ¬(x ∈ A))}

Since ∧ is commutative, we obtain:

(B −A) ∪ (C −A) = {x | (¬(x ∈ A) ∧ x ∈ B) ∨ (¬(x ∈ A) ∧ x ∈ C)}

Since ∧ and ∨ are associative, we obtain:

(B −A) ∪ (C −A) = {x | (¬(x ∈ A)) ∧ (x ∈ B ∨ x ∈ C)}
= {x | (¬(x ∈ A) ∧ (x ∈ B ∪ C)}
= {x | x ∈ ((B ∪ C)−A)}

This completes the proof that (B −A) ∪ (C −A) = (B ∪ C)−A.
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