Name:_______
ID:_____

ECS 20: Discrete Mathematics Midterm February 15, 2006

Notes:

- 1) Midterm is open book, open notes. No computers though...
- 2) You have one hour, no more: I will strictly enforce this.
- 3) You can answer directly on these sheets (preferred), or on loose paper.
- 4) Please write your name at the top right of each page you turn in!
- 5) Please, check your work!
- 6) There are 3 parts with a total possible number of points of 66. I will grade however over a total of 60, i.e. one question can be considered "extra credit". You choose!

Part I: logic (2 questions, each 6 points; total 12 points)

1) Construct the truth table for each of the statement below, and indicate which (if any) are tautologies or contradictions

a)
$$(p \rightarrow \neg p) \rightarrow \neg p$$

b)
$$(p \land \neg p) \leftrightarrow (q \land \neg q)$$

c)
$$(p \lor \neg p) \Leftrightarrow (q \lor \neg q)$$

Name:______
ID:_____

2) Using logical equivalences (preferred) or truth table, show that the statements below are tautologies:

a) $(p \land q) \lor (p \land \neg q) \lor (\neg p \lor q) \lor (\neg p \lor \neg q)$

b) $(p \land q) \lor (p \land \neg q) \lor (\neg p \land q) \lor (\neg p \land \neg q)$

Part II: proofs and number theory (5 questions; question 1-4 each 6 points; question 5 and 6 8 points each; total 42 points)

1) Prove that *n* is even if and only if $5n^2+2$ is even, where *n* is a natural number.

Name:			
ID:			
_	 -		

2) Prove that for every three natural numbers x,y and z strictly greater than 1, there is some natural number larger than x, y and z that is not divisible by x, y or z.

3) Prove that if n^2 is not divisible by 4, then *n* is odd.

4) Let $a = 2^{1001} - 5^{701} + 7^{256}$, $b = 2^{1001} - 5^{701} + 7^{256} - 1$ and $c = 2^{1001} - 5^{701} + 7^{256} + 1$. Show that one of these three numbers is divisible by 3, and another one is divisible by 2. Is your proof constructive?

Name:			
ID:			

- 5) Let *n* be a natural number, that we write as $n=a_p10^p+a_{p-1}10^{p-1}+...+a_110+a_0$, where $a_p, \dots a_0$ are the digits of n
 - a. Show that if a_0 is divisible by 2, *n* is divisible by 2.

b. Show that if $10a_1 + a_0$ is divisible by 4, *n* is divisible by 4

c. Show that if a_0 is divisible by 5, *n* is divisible by 5.

6) a) Show that any number n such that $n \equiv 3 \pmod{4}$ must have one prime factor q with $q \equiv 3$ (mod 4)(Hint: First notice that for any prime number p, either $p \equiv 1 \pmod{4}$, or $p \equiv 3 \pmod{4}$. Then write n as a product of prime numbers, and suppose that all these prime factors are NOT congruent to 3 modulo 4).

Name:_____ ID:

b) Deduce that there are infinitely many primes congruent to 3 modulo 4. (Hint: Suppose there is only a finite set $\{p_1, p_2, \dots, p_N\}$ of prime numbers that are congruent to 3 modulo 4, and consider $M = 4p_1p_2...p_N - 1$. Apply 6a) on M).

Part III: Algorithms (1 question, 12 points)

Devise an algorithm that replace each term of a finite sequence of integers with the sum of the square of the terms preceding it in the sequence, leaving the first term identical. Example: replace $S = \{1,3,5,6,7\}$ with $\{1,1,10,35,71\}$ (i.e. the first 1 stays identical; 3 is replaced with 1^2 ; 5 is replaced with 1^2+3^2 ; 6 is replaced with $1^2+3^2+5^2$ and 7 is replaced with $1^{2}+3^{2}+5^{2}+6^{2}$.

What is the complexity of your algorithm?