
Midterm - 02/15/’06

Part I

Exercise 1

a) Truth table for (p→ ¬p)→ ¬p:
p ¬p q = p→ ¬p q → ¬p
F T T T
T F F T

> From Column 4, (p→ ¬p)→ ¬p is a tautology.

b) Truth table for (p ∧ ¬p)↔ (q ∧ ¬q):
p q a = p ∧ ¬p b = q ∧ ¬q a→ b b→ a a↔ b

F F F F T T T
F T F F T T T
T F F F T T T
T T F F T T T

> From Column 7, (p ∧ ¬p)↔ (q ∧ ¬q) is a tautology.

c) Truth table for (p ∨ ¬p)↔ (q ∨ ¬q):
p q a = p ∨ ¬p b = q ∨ ¬q a→ b b→ a a↔ b

F F T T T T T
F T T T T T T
T F T T T T T
T T T T T T T

> From Column 7, (p ∨ ¬p)↔ (q ∨ ¬q) is a tautology.

Exercise 2

a) Let us consider the composite statement:
u = (p ∧ q) ∨ (p ∧ ¬q) ∨ (¬p ∨ q) ∨ (¬p ∨ ¬q).
Let us define r = p ∧ q and s = p ∧ ¬q. According to deMorgan’s law, ¬r = ¬p ∨ ¬q and
¬s = ¬p ∨ q. We can therefore rewrite the original statement u as:
u = r ∨ s ∨ ¬s ∨ ¬r.
Based on the negation law s ∨ ¬s⇔ T , and r ∨ ¬r ⇔ T . Therefore,
u⇔ T , i.e. u is a tautology.

b) Using in this order: the associativity of ∧ and ∨, the negation law, and the identity law, we
get

(p ∧ q) ∨ (p ∧ ¬q) ∨ (¬p ∧ q) ∨ (¬p ∧ ¬q) ⇔ (p ∧ (q ∨ ¬q)) ∨ (¬p ∧ (q ∨ ¬q))

⇔ (p ∧ T ) ∨ (¬p ∧ T )

⇔ p ∨ ¬p
⇔ T

Hence the original statement is a tautology.
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Part II

Exercise 1

To prove that n is even if and only if 5n2+2 is even, we have to prove the two following implications:

• If n is even, 5n2 + 2 is even : Let n = 2k. Then, 5n2 + 2 = 5 ∗ 4k2 + 2 = 2(10k2 + 1). Since
5n2+2 is a multiple of 2, it is even. Hence by direct proof, we proved that if n is even, 5n2+2
is even.

• If 5n2 + 2 is even, n is even. We will use an indirect proof. Let us assume that n is odd, i.e.
there exists k such that n = 2k + 1. Then 5n2 + 2 = 5 ∗ (2k + 1)2 + 2 = 5(4k2 + 4k + 1) + 2 =
20k2 + 20k + 7 = 2(10k2 + 10k + 3) + 1 = 2k′ + 1 by defining k′ = (10k2 + 10k + 3). Thus,
we get 5n2 + 2 to be odd as it is not a multiple of 2. We have proved that if n is odd, then
5n2 + 2 is odd, which validates its contrapositive, i.e. if 5n2 + 2 is even, then n is even.

Since we have proved that if n is even, 5n2 + 2 is even and its converse, we can conclude that n is
even if and only if 5n2 + 2 is even.

Exercise 2

Since x, y, and z are natural numbers greater than 1, the number (xyz+1) is not divisible by either x,
y or z, as xyz is a multiple of all of the three numbers, and (xyz+1)≡ 1(mod x), (xyz+1)≡ 1(mod y)
and (xyz+1)≡ 1(mod z). Thus, we have proved by constructive proof that there exists at least one
number greater than x, y, and z, which is not divisible by either of the three.

Exercise 3

Let p be the proposition “n2 is not divisible by 4”, and q be the proposition “n is odd”. To prove
the implication p→ q, we use an indirect proof, i.e. we will prove the contrapositive ¬q → ¬p. ¬q
is the proposition “n is even”, and ¬p is the proposition “ n2 is a multiple of 4”’.
Let us assume n is even. Then there exists k such that n = 2k. Consequently, n2 = 4k2, i.e. n2 is
a multiple of 4. This concludes the proof.

Exercise 4

Given a = 21001 − 5701 + 7256, b = 21001 − 5701 + 7256 − 1, and c = 21001 − 5701 + 7256 + 1, we find
that a = b + 1, and c = a + 1 = b + 2. b, a and c are therefore 3 consecutive integers. There are
two possibilities for b:

• b is even: Then, b is a multiple of 2 (note that c = b + 2 is also a multiple of 2).

• b is odd: Then, a = b + 1 is even, i.e. a is a multiple of 2.

Similarly, there are three possibilities for b when it is divided by 3:

• b is divisible by 3: Then, b is a multiple of 3.

• The remainder of the division of b by 3 is 1: There exists k ∈ Z such that b = 3k + 1. Then
c = b + 2 = 3k + 3 = 3(k + 1): c is a multiple of 3.

• The remainder of the division of b by 3 is 2: There exists k ∈ Z such that b = 3k + 2. Then
a = b + 1 = 3k + 3 = 3(k + 1): a is a multiple of 3.
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Thus, for any situation, at least one of the three numbers a, b, c is a multiple of 2 and at least one
of them is a multiple of 3. We have used a non-constructive proof as we do not know which one is
a multiple of 2, and which one is a multiple of 3.

Exercise 5

a) We know that 10 ≡ 0(mod 2), as, 10 is a multiple of 2. Consequently, 10k ≡ 0(mod 2), for
all k ≥ 1. Then

n ≡ (ap10p + ap−110p−1 + . . . + a0)(mod 2)

≡ a0(mod 2)

(1)

Thus, a0 ≡ 0(mod 2) ⇒ n ≡ 0(mod 2). Thus, divisibility of n by 2 is decided by the
divisibility of a0 by 2. Hence, n is divisible by 2, only if a0 is equal to 0, 2, 4, 6 or 8.

b) We know that 100 ≡ 0(mod 4), as, 100 is a multiple of 4. Consequently, 10k ≡ 0(mod 2), for
all k ≥ 2. Then

n ≡ (ap10p + ap−110p−1 + . . . + a0)(mod 4)

≡ a110 + a0(mod 4)

(2)

Thus, if (10a1 + a0) ≡ 0(mod 4) ⇒ n ≡ 0(mod 4). Thus, divisibility of n by 4 is decided by
the divisibility of (10a1 + a0) by 4.

c) We know that 10 ≡ 0(mod 5), as, 10 is a multiple of 5. Consequently, 10k ≡ 0(mod 5), for
all k ≥ 1. Then

n ≡ (ap10p + ap−110p−1 + . . . + a0)(mod 4)

≡ a0(mod 4)

(3)

Thus, if a0 ≡ 0(mod 5) ⇒ n ≡ 0(mod 5). Thus, divisibility of n by 5 is decided by the
divisibility of a0 by 5. Hence, n is divisible by 5, only if a0 is equal to 0 or 5.

Exercise 6

a) Let us suppose that n is a number that verifies n ≡ 3(mod 4). According to the fundamental
theorem of arithmetics, n can be written as the product of prime factors:

n = q1.q2.q3. . . . qp

where the qi are prime factors.
Let us divide qi by 4: there exists k and r with 0 ≤ r ≤ 3 such that qi = 4k + r. If r = 0
or r = 2, qi would be even, which contradicts that qi is prime. Therefore r = 1 or r = 3, i.e.
qi ≡ 1(mod 4) or qi ≡ 3(mod 4).
Let us suppose that n has no prime factor that is congruent to 3 modulo 4. Then all qi
would be congruent to 1 modulo 4, and then n ≡ 1(mod 4), which contradicts the premise
that n ≡ 3(mod 4). Therefore the hypothesis “n has no prime factor that is congruent to
3 modulo 4” is false, which can be translated as “n has at least one prime factor that is
congruent to 3 modulo 4”.
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b) Let us suppose that there is a finite set S of prime numbers {p1, p2, . . . , pn} that are congruent
to 3 modulo 4. Let us define n = 4.p1.p2 . . . pn−1. n ≡ −1(mod 4), i.e. n ≡ 3(mod 4). Using
the result of 6(a), we know that n has at least one prime factor q that is congruent to 3
modulo 4. Since we suppose that the set of prime numbers congruent to 3 modulo 4 is finite,
q belongs to S. Therefore q divides 4p1p2 . . . pn. Since q is also a divisor of n, q is a divisor of
4p1p2 . . . pn − n = 1. Since the only divisor of 1 is 1, this would indicate that q = 1, which
contradicts q is prime.
The hypothesis that S is finite is false, and therefore there is an infinite number of prime
numbers that are congruent to 3 modulo 4.

Part III

Algorithm :

Procedure Replace with Preceding SquareSum(a1, a2, . . . , an, n: Integer)
Integer sum, i, temp ;
sum← a1 ∗ a1 ;
for (i = 2 ; i≤ n ; STEP=1)

temp ← ai ;
ai ← sum ;
sum ← sum + temp * temp ;

endfor

The complexity of this algorithm is O(n). Each step in the FOR loop requires 1 comparison,
3 assignments, two additions (including the addition for the index i) and one multiplication. Since
there are (n − 1) steps, this yields (n − 1) comparisons, 3(n − 1) assignments, 2(n − 1) additions,
and (n − 1) multiplications, to which we must add 1 multiplication and 1 addition for initializing
S. The total number of operations is therefore of order n.
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