Part I

Exercise 1

a)	Truth table for $(p \to \neg p) \to \neg p$:						
	p	$\neg p$	$q = p \to \neg p$	$q \rightarrow \neg p$			
	F	Т	Т	Т			
	Т	\mathbf{F}	\mathbf{F}	Т			

> From Column 4, $(p \to \neg p) \to \neg p$ is a tautology.

b) Truth table for $(p \land \neg p) \leftrightarrow (q \land \neg q)$:

0	q	$a = p \wedge \neg p$	$b = q \wedge \neg q$	$a \rightarrow b$	$b \rightarrow a$	$a \leftrightarrow b$		
ſ	F	F	F	Т	Т	Т		
Ŧ	Т	\mathbf{F}	\mathbf{F}	Т	Т	Т		
Γ	F	\mathbf{F}	\mathbf{F}	Т	Т	Т		
Г	Т	\mathbf{F}	\mathbf{F}	Т	Т	Т		
	ט רַ ר ר	p q F F F T F F T F T F T T T T	$\begin{array}{c c c c c c c c c c c c c c c c c c c $					

> From Column 7, $(p \land \neg p) \leftrightarrow (q \land \neg q)$ is a tautology.

c)	Truth table for $(p \lor \neg p) \leftrightarrow (q \lor \neg q)$:							
	p	q	$a = p \vee \neg p$	$b = q \vee \neg q$	$a \rightarrow b$	$b \rightarrow a$	$a \leftrightarrow b$	
	F	F	Т	Т	Т	Т	Т	
	F	Т	Т	Т	Т	Т	Т	
	Т	\mathbf{F}	Т	Т	Т	Т	Т	
	Т	Т	Т	Т	Т	Т	Т	

> From Column 7, $(p \lor \neg p) \leftrightarrow (q \lor \neg q)$ is a tautology.

Exercise 2

- a) Let us consider the composite statement: $u = (p \land q) \lor (p \land \neg q) \lor (\neg p \lor q) \lor (\neg p \lor \neg q).$ Let us define $r = p \land q$ and $s = p \land \neg q$. According to deMorgan's law, $\neg r = \neg p \lor \neg q$ and $\neg s = \neg p \lor q$. We can therefore rewrite the original statement u as: $u = r \lor s \lor \neg s \lor \neg r.$ Based on the negation law $s \lor \neg s \Leftrightarrow T$, and $r \lor \neg r \Leftrightarrow T$. Therefore, $u \Leftrightarrow T$, i.e. u is a tautology.
- b) Using in this order: the associativity of \wedge and $\vee,$ the negation law, and the identity law, we get

$$\begin{array}{ll} (p \wedge q) \vee (p \wedge \neg q) \vee (\neg p \wedge q) \vee (\neg p \wedge \neg q) & \Leftrightarrow & (p \wedge (q \vee \neg q)) \vee (\neg p \wedge (q \vee \neg q)) \\ & \Leftrightarrow & (p \wedge T) \vee (\neg p \wedge T) \\ & \Leftrightarrow & p \vee \neg p \\ & \Leftrightarrow & T \end{array}$$

Hence the original statement is a tautology.

Part II

Exercise 1

To prove that n is even if and only if $5n^2+2$ is even, we have to prove the two following implications:

- If n is even, $5n^2 + 2$ is even : Let n = 2k. Then, $5n^2 + 2 = 5 * 4k^2 + 2 = 2(10k^2 + 1)$. Since $5n^2 + 2$ is a multiple of 2, it is even. Hence by direct proof, we proved that if n is even, $5n^2 + 2$ is even.
- If $5n^2 + 2$ is even, n is even. We will use an indirect proof. Let us assume that n is odd, i.e. there exists k such that n = 2k + 1. Then $5n^2 + 2 = 5 * (2k + 1)^2 + 2 = 5(4k^2 + 4k + 1) + 2 = 20k^2 + 20k + 7 = 2(10k^2 + 10k + 3) + 1 = 2k' + 1$ by defining $k' = (10k^2 + 10k + 3)$. Thus, we get $5n^2 + 2$ to be odd as it is not a multiple of 2. We have proved that if n is odd, then $5n^2 + 2$ is odd, which validates its contrapositive, i.e. if $5n^2 + 2$ is even, then n is even.

Since we have proved that if n is even, $5n^2 + 2$ is even and its converse, we can conclude that n is even if and only if $5n^2 + 2$ is even.

Exercise 2

Since x, y, and z are natural numbers greater than 1, the number (xyz+1) is not divisible by either x, y or z, as xyz is a multiple of all of the three numbers, and $(xyz+1)\equiv 1 \pmod{x}$, $(xyz+1)\equiv 1 \pmod{y}$ and $(xyz+1)\equiv 1 \pmod{z}$. Thus, we have proved by constructive proof that there exists at least one number greater than x, y, and z, which is not divisible by either of the three.

Exercise 3

Let p be the proposition " n^2 is not divisible by 4", and q be the proposition "n is odd". To prove the implication $p \to q$, we use an indirect proof, i.e. we will prove the contrapositive $\neg q \to \neg p$. $\neg q$ is the proposition "n is even", and $\neg p$ is the proposition " n^2 is a multiple of 4".

Let us assume n is even. Then there exists k such that n = 2k. Consequently, $n^2 = 4k^2$, i.e. n^2 is a multiple of 4. This concludes the proof.

Exercise 4

Given $a = 2^{1001} - 5^{701} + 7^{256}$, $b = 2^{1001} - 5^{701} + 7^{256} - 1$, and $c = 2^{1001} - 5^{701} + 7^{256} + 1$, we find that a = b + 1, and c = a + 1 = b + 2. b, a and c are therefore 3 consecutive integers. There are two possibilities for b:

- b is even: Then, b is a multiple of 2 (note that c = b + 2 is also a multiple of 2).
- b is odd: Then, a = b + 1 is even, i.e. a is a multiple of 2.

Similarly, there are three possibilities for b when it is divided by 3:

- b is divisible by 3: Then, b is a multiple of 3.
- The remainder of the division of b by 3 is 1: There exists $k \in \mathbb{Z}$ such that b = 3k + 1. Then c = b + 2 = 3k + 3 = 3(k + 1): c is a multiple of 3.
- The remainder of the division of b by 3 is 2: There exists $k \in \mathbb{Z}$ such that b = 3k + 2. Then a = b + 1 = 3k + 3 = 3(k + 1): a is a multiple of 3.

Thus, for any situation, at least one of the three numbers a, b, c is a multiple of 2 and at least one of them is a multiple of 3. We have used a non-constructive proof as we do not know which one is a multiple of 2, and which one is a multiple of 3.

Exercise 5

a) We know that $10 \equiv 0 \pmod{2}$, as, 10 is a multiple of 2. Consequently, $10^k \equiv 0 \pmod{2}$, for all $k \ge 1$. Then

$$n \equiv (a_p 10^p + a_{p-1} 10^{p-1} + \ldots + a_0) \pmod{2}$$
$$\equiv a_0 \pmod{2}$$
(1)

Thus, $a_0 \equiv 0 \pmod{2} \Rightarrow n \equiv 0 \pmod{2}$. Thus, divisibility of n by 2 is decided by the divisibility of a_0 by 2. Hence, n is divisible by 2, only if a_0 is equal to 0, 2, 4, 6 or 8.

b) We know that $100 \equiv 0 \pmod{4}$, as, 100 is a multiple of 4. Consequently, $10^k \equiv 0 \pmod{2}$, for all $k \ge 2$. Then

$$n \equiv (a_p 10^p + a_{p-1} 10^{p-1} + \ldots + a_0) \pmod{4}$$

$$\equiv a_1 10 + a_0 \pmod{4}$$
(2)

Thus, if $(10a_1 + a_0) \equiv 0 \pmod{4} \Rightarrow n \equiv 0 \pmod{4}$. Thus, divisibility of n by 4 is decided by the divisibility of $(10a_1 + a_0)$ by 4.

c) We know that $10 \equiv 0 \pmod{5}$, as, 10 is a multiple of 5. Consequently, $10^k \equiv 0 \pmod{5}$, for all $k \ge 1$. Then

$$n \equiv (a_p 10^p + a_{p-1} 10^{p-1} + \ldots + a_0) \pmod{4}$$
$$\equiv a_0 \pmod{4}$$
(3)

Thus, if $a_0 \equiv 0 \pmod{5} \Rightarrow n \equiv 0 \pmod{5}$. Thus, divisibility of n by 5 is decided by the divisibility of a_0 by 5. Hence, n is divisible by 5, only if a_0 is equal to 0 or 5.

Exercise 6

a) Let us suppose that n is a number that verifies $n \equiv 3 \pmod{4}$. According to the fundamental theorem of arithmetics, n can be written as the product of prime factors:

$$n = q_1.q_2.q_3\ldots q_p$$

where the q_i are prime factors.

Let us divide q_i by 4: there exists k and r with $0 \le r \le 3$ such that $q_i = 4k + r$. If r = 0 or r = 2, q_i would be even, which contradicts that q_i is prime. Therefore r = 1 or r = 3, i.e. $q_i \equiv 1 \pmod{4}$ or $q_i \equiv 3 \pmod{4}$.

Let us suppose that n has no prime factor that is congruent to 3 modulo 4. Then all q_i would be congruent to 1 modulo 4, and then $n \equiv 1 \pmod{4}$, which contradicts the premise that $n \equiv 3 \pmod{4}$. Therefore the hypothesis "n has no prime factor that is congruent to 3 modulo 4" is false, which can be translated as "n has at least one prime factor that is congruent to 3 modulo 4".

b) Let us suppose that there is a finite set S of prime numbers $\{p_1, p_2, \ldots, p_n\}$ that are congruent to 3 modulo 4. Let us define $n = 4.p_1.p_2...p_n - 1$. $n \equiv -1 \pmod{4}$, i.e. $n \equiv 3 \pmod{4}$. Using the result of 6(a), we know that n has at least one prime factor q that is congruent to 3 modulo 4. Since we suppose that the set of prime numbers congruent to 3 modulo 4 is finite, q belongs to S. Therefore q divides $4p_1p_2...p_n$. Since q is also a divisor of n, q is a divisor of $4p_1p_2...p_n - n = 1$. Since the only divisor of 1 is 1, this would indicate that q = 1, which contradicts q is prime.

The hypothesis that S is finite is false, and therefore there is an infinite number of prime numbers that are congruent to 3 modulo 4.

Part III

Algorithm :

Procedure Replace_with_Preceding_SquareSum $(a_1, a_2, ..., a_n, n:$ Integer) Integer sum, i, temp ; sum $\leftarrow a_1 * a_1$; for (i = 2 ; i \le n ; STEP=1) temp $\leftarrow a_i$; $a_i \leftarrow$ sum ; sum \leftarrow sum + temp * temp ; endfor

The complexity of this algorithm is O(n). Each step in the FOR loop requires 1 comparison, 3 assignments, two additions (including the addition for the index i) and one multiplication. Since there are (n-1) steps, this yields (n-1) comparisons, 3(n-1) assignments, 2(n-1) additions, and (n-1) multiplications, to which we must add 1 multiplication and 1 addition for initializing S. The total number of operations is therefore of order n.